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Abstract — This study presents a soft deadline scheduler for 
distributed systems that aims of exploring data locality 
management. In Hadoop, neither the Fair Scheduler nor the 
Capacity Scheduler takes care about deadlines defined by the 
user for a job. Our algorithm, named as Cloud Least Laxity First 
(CLLF), minimizes the extra-cost implied from tasks that are 
executed over a cloud setting by ordering each of which using its 
laxity and locality. By using our deadline  scheduling algorithm, 
we demonstrate prosperous performance, as the number of 
available nodes needed in a cluster in order to meet all the 
deadlines is minimized while the total execution time of the job 
remains in acceptable levels. To achieve this, we compare the 
ability of our algorithm to meet deadlines with the Time Shared 
and the Space Shared scheduling algorithms. At last we 
implement our solution in the CloudSim simulation framework 
for producing the experimental analysis.  

Index Terms — Cloud computing, Cluster computing, Soft deadline 
scheduling, Hadoop 

I. INTRODUCTION 
The Future Internet is a notion respresenting the needs and 

the solutions for the coming applications over intenet. The big-
data processing is one of the major study theme related to the 
Future Internet e.g. integrated vision so of Internet resrouces 
[18]. Recently, Google presented MapReduce [1] as a 
programming model for efficiently processing big data sets; 
produced by large scale systems e.g. grids and inter-clouds 
[14], [19]. This was one of the first paradigms for processing 
massive data in distributed, cluster and cloud computing. This 
is beacuse the computation power required to process and 
analyse big data is high thus such decision making 
management remains a problem.To this extend, a particular 
useful solution has been proven to be the specification of 
deadlines for each job for calculating the maximum amount of 
resources which will be used to compute the job. An 
overpassed deadline in this case can be seen as a 
compromisation yet in some instances with a non-manageable 
cost. 

With this in mind, herein we develop a soft deadline 
scheduler for distributed systems with data locality 
management named as CLLF. The algorithm is based on the 
popular Least Laxity First (LLF) algorithm and has been 
designed for considering the practical issues related to 
distributed applications. Our solution shows that LLF is not 
applicable out of the box on a distributed system because of its 
preemptive behaviour which implies a null transfert cost from 
one node to an other. 

So, we  firstly present the deadline-oriented scheduling 
work existing in the literature (Section II), and we focus on the 
problems related to the implementation of these algorithms on 
distributed systems. By this evaluation, we show that in 
application such has Hadoop [2] the data locality, the 
predictability of the execution time of a task, and the 
preemption are important issues to be able to implement any 
deadline scheduling algorithm in a cloud. Further to this, 
section III describes our proposal algorithm and its 
requirements and assumptions. The rest of the paper is 
organized as follows, section IV, presents the experiment 
scenario and we  analyze the performances of CLLF by 
comparing the ability of our algorithm to meet deadlines to the 
Time Shared and the Space Shared scheduling algorithms 
implemented in CloudSim [3]. We show that the deadline-
meeting approach of CLLF allows to minimize the extra-cost 
implied by the lateness of a task. We also demonstrate the 
importance of the data allotment in a cloud and we propose an 
algorithm which determines a data distribution compatible with 
CLLF in order to avoid situations where some workers are 
resource bottlenecks. Finally, section V illustrates the 
concluding remarks and the further research directions of our 
work. 

II. BACKGROUND 
This work aims on exploring time-oriented scheduling for 

large scale infrastructures e.g. HPC, grids [20] and clouds by 
focusing on their local resource management system [15].  
Specifically, meta-scheduling decision making process is based 
on random services request from a user or a set of users that are 
clients of a datacentre that could be extended to an inter-cloud 
system [14]. The inter-cloud facility distributes the request for 
service and encloses services into VMs (a procedure that called 
sandboxing).  

A scheduling algorithm with a deadline-meeting approach 
aims of catching the deadlines of every task that are about to be 
executed prior to its burst time. Based on that, it becomes 
possible to specify tasks which must be processed within a 
short delay that means that some answers must be given within 
a short delay as well. The notion of deadline meeting has been 
defined in many different ways, but the common point for 
every definition is that the aim of such scheduler is not only to 
guarantee the answer quality, but to do it within time 
specification. In this concept, we assuemt that our solution is 
capable for scheduling in a large scale setting that could 
incorporate meta-computing characteristics e.g. meta-brokers 
[13] that are currently are considered a future integration step. 



In the following sections, we discuss the different types of 
deadlines and we present three popular monoprocessor 
deadline-aware scheduling algorithms which are directly 
related with our work. We then present the Hadoop schedulers 
used to process tasks over a cloud without any form of deadline 
management. And we finaly highlight issues to implement a 
deadline scheduler in a distributed environment such as 
Hadoop. 

A. Deadline scheduling literature 
A  task τ has two main characteristics: its worst execution 

time Tτ  and a deadline Dτ . We can then classify deadline based 
tasks in three categories :  

• τ is a hard deadline task: in any case, Tτ < Dτ. The 
deadline miss is not allowed. 

• τ is a soft deadline task: if Tτ > Dτ , the task has a 
penalty in function of its lateness Lτ = Tτ - Dτ. 

• τ is a firm deadline task: the task τ gains reward if      
Tτ < Dτ . The reward of the task is function its 
aheadness Aτ = Dτ - Tτ . 

 
1) Rate Monotonic (RM) 

The RM algorithm is probably the most popular and most 
used scheduling algorithm in practice on mono-processor 
systems. However, it is based on strong assumptions. For 
example, the set of tasks which will be proceeded has to be 
known a priori. Moreover, each task of the set must: 

• be periodic, 
• be preemptable, 
• be independent, 
• have a period equal to its deadline. 
The RM algorithm defines each task's priority by its 

respective duration. Thus, the shortest task will be given the 
highest priority.  
 

2) Earlier Deadline First (EDF) 
EDF is an optimal mono-processor scheduling algorithm 

with sporadic tasks support. The EDF algorithm gives the 
highest priority to the task which has the closest deadline. 

The algorithm is preemptive. It means that some tasks may 
be interrupted in order to process other tasks with a higher 
priority. So, unlike the static priority of the RM algorithm, the 
EDF algorithm is driven by “dynamic priority in the sense that 
the priority of a request is assigned as the request arrives” [5]. 

The assumptions made for the RM algorithm are the same 
for the EDF algorithm except the periodicity of tasks. So the 
only assumptions remaining are that each task must: 

• be preemptable, 
• be independent (no sequential relation between the 

tasks) 
 

3) Least Laxity First (LLF) 
The LLF algorithm is another optimal scheduling algorithm 

driven by dynamic priorities. It is based on the notion of laxity. 
The laxity of a task is defined as the deadline minus the 
remaining computation time needed to complete the task [5]. 

So the laxity is the maximum time that a task can wait before it 
becomes not possible to meet its deadline. LLF gives the 
highest priority to the process which has the lowest laxity. LLF 
is also preemptive and the assumptions are the same as those 
for EDF. LLF also have a better support than EDF of non-
periodic tasks [5]. 

B. Scheduling with Hadoop 
Hadoop [2] is a free Java framework implementing the 

MapReduce paradigm presented by Google in 2004 [1]. Thus, 
Hadoop allows programmers to create distributed applications 
with a high level of abstraction from the technical issues 
related to distributed systems. A Hadoop cluster is composed 
of one master node, and many workers. The jobs are always 
submitted by an user to the master which split them in Map and 
Reduce tasks. Then the master uses a scheduling policy 
depending on the needs of the user to submit each task to the 
workers. In this section, we present the two existing scheduling 
algorithms which already exist for Hadoop in order to compare 
them to our algorithm further in this paper.  

 
1) Hadoop Fair Scheduler (HFS) 

“Fair scheduling is a method of assigning resources to jobs 
such that all jobs get, on average, an equal share of resources 
over time” [6]. This method implies two problems: to be able to 
define how fairly a job has been proceeded, and to choose 
which job to run when a task slot becomes available. 

The fairness can be measured by the calculation of a deficit 
which is “the difference between the amount of compute time it 
should have gotten on an ideal scheduler, and the amount of 
time it actually got'” [6]. So, when a task has a large deficit, it 
means that it has been proceeded during less time that it should 
have been. This task has been treated unfairly. Thanks to the 
deficit of each job, the master can sort tasks by fairness and 
give the highest priority to the one which has been proceeded 
the most unfairly. The actual goal of the HFS is to minimize 
the deficit of each application. If the deficit equals zero for all 
tasks, it means that the resources have been shared in perfect 
proportions. 

In practice, several users may need the cluster at the same 
time, and it is easy to imagine that the jobs will not have the 
same priority. So, this scheduler also implements a system of 
pools which groups some jobs together. Then, the scheduler 
will try to be fair between the pools. For example, let's say that 
each user using the cluster has got his own pool (which is the 
actual default configuration for HFS), the resource will be 
fairly shared between pools, and thus each user will dispose of 
a fair part of the resources to run his jobs without slowing 
down the other users. It's also important to note that HFS 
allows to give weights to pools or to jobs. The job weights can 
be based on a given priority or on their sizes. The scheduler 
fairly shares the resources between the pools, but the jobs 
within each pool must be scheduled as well. To solve this 
issue, HFS uses the exact same scheduling algorithm locally 
inside the pools. Thus, the resources are fairly shared between 
pools, and the running time of each job is fairly shared in each 
pool. This management allows several users to use the cluster 



at the same time and provides them a draft of multitasking 
behaviour. This algorithm is non preemptive. 

 
2) Hadoop Capacity Scheduler (HCS) 

The Hadoop Capacity Scheduler is based on the idea of a 
priori resource sharing. As explained in [7], the HCS 
implements a multiple queues support. A fraction of the 
available resources is allocated to each queue a priori. So, all 
jobs are submitted to queues, and each job in each queue is 
proceeded by the dedicated fraction of the resources that has 
been allocated to the queue. If there's unallocated resources 
available, it can be used by any queue beyond its guaranteed 
capacity.  

Jobs are sorted in queues by submission time (FIFO) and 
optionally by job priority. The algorithm does not support 
preemption once a job is running. 

C. Deadline scheduling implementation issues on distributed 
systems 
Hadoop schedulers have been implemented in order to 

satisfy the needs of different companies (Amazon, Facebook, 
etc). The Hadoop Fair Scheduler provides short response times 
to small jobs in a shared Hadoop cluster. It also improves 
utilization over private clusters or Hadoop On Demand [8]. 
The features of the Capacity Scheduler are close with the Fair 
Scheduler, but the implementation is different.  

None of these schedulers take care of some time constraints 
for the jobs. We have shown that HFS aims to share the 
resource fairly between the jobs while HCS works with pre-
defined resource allocation, but none of these schedulers 
allows the user to specify a deadline that must be met. So, we 
have to implement a new scheduler in order to use this feature 
in Hadoop. But the three deadline schedulers presented in 
section IIError! Reference source not found. are not directly 
applicable to a distributed environment. If we take the example 
of the LLF algorithm, we can see that there  are many 
important assumptions that are not true in our case.  

We define the following scenario to show how a classic 
LLF algorithm would work in  a Hadoop environment: we 
have a cloud composed of a number 𝑛!"of virtual machines 
(VM), each VM has one processor, and we have a number 𝑛!  
of cloud jobs (cloudlets) to run. Each cloudlet 𝐶!  has a 
deadline 𝐷!. Our aim is to meet the deadlines of each cloudlet. 
Assuming that 𝑛! > 𝑛!", if we use the LLF algorithm to 
schedule the cloudlets, while each VM will be running one 
cloudlet, the other cloudlets will wait in queue sorted by laxity 
(at any time). Then, two events are possible : 

• Event 1: One of the running cloudlet finishes. Then 
one VM becomes idle, so the scheduling algorithm will 
start the first cloudlet of the waiting queue into the 
newly idle VM. 

• Event 2 : One of the waiting cloudlets (named 𝐶!) has 
a lower laxity  than one of the running cloudlets 
(named 𝐶! currently running on 𝑉𝑀!). So, the 
scheduling algorithm will pause 𝐶! and run 𝐶! on 𝑉𝑀! 
instead. Then 𝐶! will be put into the waiting queue. 
Assuming that 𝐶! is the first element of the queue, if 

an event 1 happens, then 𝐶! will have to run on a VM 
which might be different than  𝑉𝑀!. 

In this scenario, both events are unrealistic in a cloud. 
Indeed, during the  event 1, the scheduling algorithm starts the 
task with the least laxity on any idle VM. But this behaviour 
does not take care of the data locality. As explained in [9], the 
data management on a Hadoop cluster is done thanks to a 
distributed file system. Each chunk is duplicated several times 
on different hosts (three times by default on HDFS). So, 
assuming that a cloudlet is actually an operation on a specific 
chunk, it cannot be executed on any other host. The cloudlet 
must be ran on a machine which has a local copy of the data, or 
the chunk must be transferred to an idle VM. 

During the event 2, the cloudlet 𝐶! starts its execution on 
one VM, is then preempted, and finally finishes on another 
VM. Once again, this procedure is unrealistic. The problem of 
the data locality put in evidence on the event 1 remains true in 
this case : 𝐶! cannot be resumed on any VM. Moreover, 
although it is possible to implement a pause/resume task 
feature on a different VM by using the procedure of task 
migration (or VM) [16], this action has an important cost while 
LLF is clearly defined for a null cost of task migration. 

So, the first conclusion is that LLF is obviously 
inappropriate to schedule tasks within a cloud. Arguably 
enough, all other algorithms presented earlier will also 
encounter the same issues. 

A list of other problem related to deadline scheduling in 
Hadoop is in [9]. The main problem highlighted  in [9] is about 
predictability of the execution time needed for a task 

The number of slots that have been defined on the worker is 
very important for the completion time of task. Let's imagine a 
worker with 𝑛!" available Processor Elements (PE), and 𝑛! 
available slots. The  slot-to-core ratio will be  !!

!!"
 . It means 

that the local operating system of the worker will have to 
schedule the execution of the 𝑛!  tasks on 𝑛!" PE. 
Consequently, if 𝑛! > 𝑛!", the execution times of the tasks on 
the workers are closely linked to the OS scheduling algorithm 
(which might be different between workers). Moreover, a large 
number of slots on one worker can increase the number of disk 
access and makes the execution time evaluation even harder. 
Once again, it depends on the local OS management. The 
influence of the Slot-to-Core ratio and the Multiple Concurrent 
Jobs have been studied in [9]. 

III. THE CLOUD LEAST LAXITY FIRST (CLLF) PROPOSAL 
In this section, we present our scheduling algorithm which 

solves the issues highlighted above. We firstly discuss the 
assumptions made during the design of the algorithm and we 
then present the scheduling policies on the master and on each 
worker. 

A. Assumptions 
CloudLLF is a non-optimal distributed deadline scheduler 

for soft deadline tasks in the sense of the definition given in 
section II.  

We consider a cloud composed of 𝑛!" virtual machines. 
Each VM has a number of Processor Elements (PE) 𝑛!" which 



are all defined by a number of millions of instructions that can 
be executed during one second (MIPS). Moreover, each VM is 
also defined by an amount of memory (RAM), a bandwidth 
(BW) and a capacity of storage (HDD). Each VM runs on a 
single host.  As our proposed algorithm tries to provide a 
deadline meeting behaviour to the cloud, the predictability of 
the total execution time of each task remains one of the most 
important assumptions we have made. Running several VMs 
on one single host implies a local scheduling by the host's OS 
which considerably increases the hardness of the prediction of 
the completion time of a task. We then decided to consider one 
VM by host with the exact same hardware characteristics. 

Thanks to the conclusions related to the Slot-to-Core Ratio 
made in section II.C we decided to allow a number of 
concurrent tasks on a VM equal to 𝑛!". 

Finally, as described in [10], we consider that each data 
chunk is duplicated 𝑛!"# times on the hosts. 

B. Local scheduling on nodes 
The local scheduling on each worker is really simple. It is a 

First-In-First-Out (FIFO) queue as described by the Algorithm 
1. The node notifies the master when one or more PE is idle 
and if the node receives a new task while processing the 
maximum number of concurrent tasks, the new task waits in 
the FIFO queue for one PE to become idle. It is important to 
notice that during a normal utilisation, the waiting queue size 
should always equals zero thanks to the global scheduling 
algorithm. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Global scheduling on the master 
On the master node the global scheduling algorithm is 

hosted. We choose a derivation of the LLF algorithm presented 
in II.A.3). The main difference between LLF and our algorithm 
is about preemption. We decided to implement a non-
preemptive algorithm because on a multiprocessor algorithm, 
one of the assumptions is the following. If a task is paused on 
one processor, it can be resumed on an other processor with a 
negligable cost (as explained in [11]). This assumption cannot 
be transposed to a distributed system that uses data locality 

management. If a task is paused on a node, this task can only 
be resumed on the same node. Indeed, there's only few nodes 
having the task data locally, and among them, the only one to 
know the current progression of the task is the one which 
started it.  If the resuming is done on an other node, the task 
will have to restart from the beginning, so, the assumption 
made earlier cannot be assumed any more. That's why we 
decided to forbid the preemption in our algorithm. 

The general idea of the algorithm is to sort the cloudlets by 
laxities (the first has the lowest one). Giving this sorted list, the 
algorithm takes the first element of this list and looks for a host 
that locally have the data of the cloudlet and which also have at 
least one free slot. If one matching host is found, the task is ran 
on it, otherwise, the algorithm restart the same procedure using 
the second element of the list. The implementation is described 
by the pseudo-code of the Algorithm 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm 2 is derivated from the classic mono-processor 

LLF algorithm. It is important to say that this algorithm must 
be executed periodically, or on events (completion of a task, 
arrival of a new task). In the fisrt case, the study in [10] of the 
influence of the Slave-to-Master Heartbeat interval remains 
true. 

The differences between our algorithm and a classic LLF 
algorithm are the data locality management and the non-
preemptive behaviour of our algorithm. Those differences 
allow CLLF to avoid the issues highlighted in section II.C. We 
have shown in the previous algorithms that once a task started 
on a node, it can’t be stopped until its completion, and each 
task must be ran on a worker which owns a local copy of the 
data chunk corresponding to the task. Unfortunately, those 

Data : 
- 𝑐!"#$[ ] : Local cloudlets queue (in form of a 

list). 
- 𝑣!"[ ] : The state of each PE (idle/busy) on the 

VM (in form of an array). 
- 𝑥 : Iteration variable (Integer) 

 
Procedure : 
1 For 𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ  𝑜𝑓  𝑣!" , 𝑥 ∈ ℕ do 
2 .     If 𝑣!" 𝑥   𝑖𝑠  𝑖𝑑𝑙𝑒 then 
3 .     .     Run 𝑐!"#$[0]; 
4 .     .     Remove 𝑐!"#$[0] from 𝑐!"#$; 
5 .     .     Set 𝑣!"[𝑥] as busy; 
6 .     End if 
7 End for 

Algorithm 1: Node FIFO scheduling algorithm 

Data : 
- 𝑐!"#$[  ] : Remaining cloudlets (in form of a list) 
- 𝑐!"# : The current laxity of the cloudlet 
- 𝑐!"#  [ ] : The ids of the VMs which locally have the 

cloudlet data (in form of an array) 
- 𝑣!"#$ [ ] : The available VMs (in form of an array) 
- 𝑣!" [ ] : The state of each PE (idle/busy) on the  

VM  𝑣  (in form of an array). 
- 𝑣 : Iteration variable (VM) 
- 𝑥 : Iteration variable (Integer) 

 
Procedure : 
1 Update 𝑐!"# of 𝑐!"#$ with the current time ; 
2 Sort 𝑐!"#$ by 𝑐!"# ; 
3 For 𝑣 ∈   𝑣!"#$ do 
4 .     For 𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ  𝑜𝑓  𝑐!"#$   &  𝑣!"   ℎ𝑎𝑠  𝑜𝑛𝑒  𝑖𝑑𝑙𝑒  𝑃𝐸do 
5 .     .     If 𝑣. 𝑖𝑑 ∈ 𝑐!"#$ 𝑥 !"#    then 
6 .     .     .     Run 𝑐!"#$[𝑥] on  𝑣 if 𝑣!"; 
7 .     .     .     Remove 𝑐!"#$[𝑥] from 𝑐!"#$ ; 
8 .     .     .     Set one more PE used on  𝑣!"; 
9 .     .     End if 
10 .     End for 
11 End for 

 
Algorithm 2 : Master CLLF scheduling algorithm 



characteristics make CLLF loose its theorical optimality, but 
the performances observed in practice are  motivating. 

We remark to give the algorithm a behaviour that handles 
both static and dynamic priorities is quiet trivial. Indeed, 
assuming that each task has been defined with a given static 
priority 𝑝 ∈   ℕ, where 𝑝 = 1 is the least, the tasks might be 
sorted not only using their current laxities, but also using their 
static priorities. 

Thus, we can define a rank 𝑅! for each task 𝜏! with a laxity 
𝐿! and a priority 𝑃!  as in equation (1). 
 

 𝑅! =
𝐿!
𝑃!

 (1) 

 
So, the algorithm remains the same except that the tasks are 

now sorted by rank (the lowest first) instead of laxity. 

D. Global characterization 
Figure 1 illustrates a low-level global architecture of the 

system. It shows the path followed by the cloudlets. All 
cloudlets known before the execution of the algorithm are 
sorted by laxity in a queue and are then sent to idle VMs. An 
online cloudlet is directly inserted to the laxity-sorted queue at 
the right place and is then sent to a VM as well. Figure 1 also 
demonstrate the implementation to avoid the Slot-to-Core ratio 
issue discussed in II.C. 

 

 
 

Figure 1: Global representation - N hosts - 4 PEs by host 
 

TABLE I.  shows the main differences between the Hadoop 
schedulers, the CloudSim schedulers and our scheduler. 

It appears that the Fair Scheduler and the Capacity 
Scheduler have a respectively a close behaviour to Time 
Shared and Space Shared. The main difference is about the 
data locality management. It is also important to notice that 
none of the algorithms is preemptive. Moreover, we can 
observe that our algorithm is the only one which has been 
designed with a deadline-meeting approach. We will explain in 
section IV.D that this behaviour allows this algorithm to 
minimize the cost overhead implied when a task misses its 
deadline. 

TABLE I.  COMPARISON OF THE SCHEDULERS 

 Hadoop CloudSim 
CLLF Fair 

Scheduler 
Capacity 

Scheduler 
Time 

Shared 
Space 

Scheduler 
Pre-reserved 
Ressources - × - × - 
Fair on 
exec. time × - × - - 
Data locality 
management × × - - × 
Static 
priorities 
management 

× × - - optional 

Deadline 
aware - - - - × 
Preemptive - - - - - 

IV. PERFORMANCES 
In this section, we analyse the practical capabilities of 

CLFF. We firstly present the experiment scenario and we then 
compare the perfornances (deadline meeting, execution time, 
cost, data locality sensibility) of CLLF  to the Space Shared 
and Time Shared scheduling algorithm of Cloudsim. 

A. Scenario 
The performance measurement has been realized using the 

CloudSim [4] framework. 
The aim of this experiment is to show the ability of CLLF 

to meet deadlines in situations where the other algorithms 
(Time Shared and Space Shared) cannot. To achieve this, we 
propose the following scenario. We define an homogenous 
datacenter composed of 𝑛!"#$ hosts. Each host has the 
following hardware specification : 

• A number  𝑛!" = 4 of processing element. Each PE 
has a speed of 800 mips. 

• A Random Access Memory (RAM) of 2048Mo. 
• An available bandwith of 10Gbit/s. 
• A storage capacity of 1To. 
We process 2,524 cloudlets on the previously defined 

datacentre using three schedulers : CLLF, Time Shared and 
Space Shared. The cloudlets lengths are not equal and each 
cloudlet is given a deadline proportionnaly to its length. The 
data chunks are duplicated on three different hosts and we 
assume that the data placement has been done before the 
beginning of the experiment. 

B. Deadline meeting 
Time Shared and Space Shared are the two cloudlet 

scheduling policies given out of the box with CloudSim. Their 
accurate description are available in [12]. They can be 
considered quiet close from the Fair Scheduler and the 
Capacity Scheduler of Hadoop as we can see on the previous 
table. However, Space Shared and Time Shared  do not handle 
any form of data locality management. It's important to notice 
that during the experiment, our algorithm did handled the data 
locality problem and so, the comparison of the results is not 
really fair for our algorithm regarding that it had to solve a 
harder problem than the other algorithms. Despite this 
unfairness, we show that the behaviour of our algorithm 
remains more efficient to meet the deadline of each cloudlet. 



We compare the number of deadline missed by each 
scheduler for the given set of cloudlets and a variable number 
of hosts. 

 

 
Figure 2 : Comparison of the missed deadlines 

On the Figure 2 is shown the result of this experiment. On 
the x axis is the number of hosts used (3 to 400) and on the y 
axis is the number of deadlines missed. According to these 
results, we can clearly see that the Time Shared algorithm 
becomes totally inefficient under one certain number of hosts. 
In TABLE II.  are the results extracted from the experiment 
that uses 280 hosts. 

TABLE II.   RESULT FOR 280 HOSTS 

 Number of missed 
deadlines Missed deadlines ratio 

Time Shared 2512 99.5% 
Space Shared 827 32.8% 

CLLF 301 11.9% 
 
We can notice in this example that Time Shared misses 

almost all the deadlines (which is the worst possible result) 
while Space Shared is a little bit more efficient but still misses 
more than two times more deadlines than our algorithm (which 
is disadvantaged because of the data locality problem). The 
second important result is the minimum number of host to meet 
all the deadlines, and once again, our algorithm remains the 
best. In the TABLE III. are the accurate results for the 
experiment using 321 hosts. We can observe that our algorithm 
meets all the deadlines while Time Shared has a pretty good 
performance but remains not perfect and Space Shared still 
misses the deadline of more than one cloudlet out of five. 

TABLE III.  RESULT FOR 321 HOSTS 

 Number of missed 
deadlines Missed deadlines ratio 

Time Shared 48 1.9% 
Space Shared 566 22.4% 

CLLF 0 0% 

C. Execution Time 
We can observe on the Figure 3 the result of an other 

experiment.  In this case, we tried to measure the total 
execution time of the job (all the cloudlets processed) for a 

variable number of host. On Figure 3, the x axis is the number 
of hosts used (3 to 400) and the y axis represents the total 
execution time. 

 

 
Figure 3: Comparison of the execution time 

 
In this case, it appears clearly that the execution times of all 

the three algorithms seems to be quiet identical. Once again, it 
is important to remember that only our algorithm dealt with the 
data locality problem which may imply an overhead on the 
total completion time. Despite this, we observe performances 
which are between Space Shared and Time Shared. 

D. Costs 
CLLF is a scheduler able to process soft deadline tasks. 

Such a task has penalties when it misses its deadline. This 
penalty is a function of the lateness of the task. So, it is 
interesting to analyse the percentage of the computational 
power used to process tasks after their deadlines in order to 
measure the performance of CLLF to minimize the lateness of 
the tasks. We call the percentage of the computation time used 
to process a task after its deadline the  cost of the task. 

 
Figure 4 : Comparison of the costs 

For example, a task 𝜏, with a deadline 𝐷!, has been 
processed during 𝑇 seconds. We can distinguish two cases : 

• 𝑇 ≤ 𝐷! : the task has been finished on time, the cost is 
null. 

• 𝑇 > 𝐷! : the task has overpassed its deadline, so the 
lateness of the task is 𝐿! = 𝑇 − 𝐷! . The penalty 



received by  𝜏 is then 𝑃! = 𝑓(𝐿!) with 𝑓(𝑥) being the 
penalty function. So finally, the cost is 𝐶! =

!!
!

 . 
On the Figure 4 is shown the sum of the costs of each 

cloudlet implied by each algorithm in function of the number 
of hosts. We can see that the best algorithm to minimize the 
costs is CLLF. The integrals of the three curves on the Figure 4 
are shown on the TABLE IV.  

TABLE IV.  INTEGRALS OF THE COST’S CURVES 

 Cost Integral Normalized cost 
Time Shared 165.56 1.29 
Space Shared 134.37 1.05 

CLLF 127.9 1 
 

E. Data Locality 
One of the most important characteristics of our algorithm 

is that a cloudlet cannot run on a host which do not locally 
have the corresponding data. The data move to an idle host is 
forbidden in order to solve issues described as follows. 

The main reason of this decision is related to the 
predictability of the transfer time. Indeed, the move of a 
cloudlet to a special host implies an upload time. But, this 
duration is closely bounded to the network state at the moment 
of the transfer. Moreover, in practice, the network bandwidth 
might be used by another application. So, it becomes almost 
impossible to predict accurately the uploading time and 
regardless of this, the deadline of the moving cloudlet will not 
change. In this case, the laxity is described by equation (2).  
 𝑳𝒂𝒙𝒊𝒕𝒚 = 𝑫𝒆𝒂𝒅𝒍𝒊𝒏𝒆 − (𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏  𝒕𝒊𝒎𝒆 + 𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓  𝒕𝒊𝒎𝒆) (2) 

Since the transfer time is unpredictable, the laxity  becomes 
undefinable. This vagueness is not acceptable in our case, and 
this is why we decided to avoid it. It seems obvious that the 
data placement has an important role in the algorithm's 
efficiency. Indeed, if a host has locally only very long 
cloudlets, there is a lot of chance that it will be the last host to 
finish its tasks, and so it will increase the total duration time of 
the job. So, it appears essential to make a decision when 
choosing the machines on which a dataset will be hosted 
regarding on which datasets are already located on those hosts 
in order to avoid overloaded hosts. 

For our simulation, we implemented an intuitive simple 
algorithm which provides acceptable results. The pseudo-code 
which describe it is in the Algorithm 3. The algorithm is used 
to choose on which VMs should be duplicated the data chunks. 
For each chunck, with 𝑛! duplication required, the algorithm 
sums the already present cloudlets lengths on each VM, and 
looks for the 𝑛! VMs with the minimum sum (charge). 

We can clearly see the influence of the data locality on the 
global performances of the algorithm. The pseudo periodicity 
of the Figure 5 has a period of 3 hosts, which is also the 
number of duplication of the data chunks for this experiment. 

 
 
 
 
 

 
 
Using this algorithm, we remark an influence on the 

number of deadlines missed by the system. Indeed, on the 
Figure 5 is shown a zoom on the CLLF curve of the Figure 2.  

 

 
Figure 5 : Pseudo-perodicity implied by the data locality 

 
 
After several experiments, we remark that the best 

performances depend on the criteria of equation (3). 
 𝑛!"#$ = 𝛼×𝑛!"# ,𝛼 ∈ ℕ (3) 

The α in the equation (3) is an integer. It means that the 
best performances are met for a number of hosts which is a 
multiple of  the number of data chunks duplications. On the 
Figure 6  is a 3D representation of the experiment result. On 
the first axis is the number of data chunk duplication, on the 
second axis is the number of hosts in the datacenter and on the 
third axis is the number of missed deadlines.  

 
Figure 6 : Influence of the data chunk duplication 

We can see that the maximum number of missed deadlines 
happens for a minimum number of hosts and duplications. And 
the best performances are reached for a maximum number of 
hosts and duplications. As CLLF runs the tasks on VMs which 
have a local copy of the tasks data, the more duplication of 
chunks there is, the more solution CLLF has. So, an important 
diponibilty of the data allows CLLF to choose an efficient VM 
for each task, thus, the performances are increased. 

Data : 
- 𝑐!"#$[  ] : List of cloudlets (in form of an array). 
- 𝑐!"#[  ] : The VMs's ids which locally have the 

cloudlet (in form of an array). 
- 𝑐!"#$%& : The length of the cloudlet. 
- 𝑣!"#$%& : The charge of the VM (the sum of its 

local cloudlets's lengths). 
- 𝑛! : The number of duplication of each data (3 by 

default). 
- 𝑥, 𝑦 : Iteration variables (Integers) 
- 𝑣!"# : Temporary variable (VM) representing the 

currently selected VM. 
 
Procedure : 
1 For 𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ  𝑜𝑓  𝑐!"#$ , 𝑥 ∈ ℕ do 
2 .     For 𝑦 < 𝑛! , 𝑦 ∈ ℕ do 
3 .     .     Mark as 𝑣!"# the VM with the 𝑣!"#$%& min ; 
4 .     .     𝑐!"#$[𝑥]!"# 𝑦 ←   𝑣!"# ; 
5 .     .     𝑣!"#!"#$%& ← 𝑣!"#!"#$%& + 𝑐!"#$[𝑥]!"#$%& ; 
6 .     End for 
7 End for 

Algorithm 3 : Data placement decision 



V. CONCLUSION 
This study presents a soft real-time scheduling algorithm 

for distributed systems with data locality management. The 
algorithm called CLLF is based on the popular LLF algorithm 
and has been designed to take into account the practical issues 
related to distributed applications. We demonstrate that LLF is 
not applicable out of the box on a distributed system because of 
its preemptive behaviour which implies a null transfert cost 
from one node to an other, and we notice numerous other 
issues about real-time scheduling on distributed system. 
However, we show that a deadline-meeting approach to 
schedule tasks over a cloud allows to minimize the extra-cost 
of each task while the execution time of the job remains 
acceptable. We demonstrate the importance of the data 
placement within a cloud to avoid situations where one node 
becomes a resource bottleneck, and we propose an algorithm 
for the data allotment over a distributed file system such as 
HDFS. The future step of our research includes integration of 
more advance scheduling menagemetn to include resource 
discovery means [17] for demonstrating the effectiveness of 
our deadline algorithm in dynamic node formation. In addition, 
we aim of applying the solution into large-scale virtualized 
grids [19] and inter-cloud [14] scenarios to explore the 
efficiency of the algorithm in higly dynamic and large-scale 
cases. 
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