
Analysis of requirements for virtual machine
migration in dynamic clouds

Stelios Sotiriadis, Nik Bessis
School of Computing and Mathematics

University of Derby
Derby, United Kingdom

(s.sotiriadis, n.bessis)@derby.ac.uk

Pawel Gepner
Intel Corporation
United Kingdom

pawel.gepner@intel.com

Nicolas Markatos
National Technical University of Athens

Greece and KETAK, Mediterranean
College, Greece

n.markatos@ntua.gr

Abstract— Highly dynamic environments like clouds by
nature cause a high degree of unpredictability of resource
utilization and performance. Failures, latencies and heterogeneity
should always be the main concern for affecting the scheduling
decisions in distributed infrastructures. As a result, the
scheduling efficiency of jobs before their submission is very
difficult to be achieved or either forecasted. Even in the cases of
the most complex schedulers a comprehensive dynamic view
cannot always be predicted. Thus, the rescheduling concept takes
advantage of the current scheduling status and performs a
dynamic scheduling decision. In this paper we present a
discussion of the virtual machine migration strategies that are
currently available in distributed systems based on the need of
migrating virtualized resources in order to achieve better
resource utilization and performance such as improve load
balancing, makespan and higher throughput of jobs. We
conclude our study with a critical discussion of vital
requirements for virtual machine migration.

Keywords—Cloud, Virtual Machine, Virtual Machine
Migration, Process Migration, Live Migrations

I. INTRODUCTION
Cloud computing aim is to facilitate an environment for

wider distribution of services where users access resources
remotely on a pay on demand model. So, cloud computing is
defined as a bespoke service setting where resources (hardware
and software) that reside to remote locations are utilized by
everyday Internet users. The on-demand services are included
in virtualized environments named as virtual machines (VMs).
Specifically, the VM term refers to the virtual representation of
a part of computational resources along with an operating
system. In this context a cloud defines three main roles namely
as the service consumer, the service provider and the service
creator [1]. Traditionally, the service creator generates a
service that is utilized by the consumer and represents the user
hardware and software requirements for leasing cloud capacity.
This request is hosted in the premises of the service provider.

A cloud service life cycle contains various user requests for
services submitted to a cloud service provider. So cloud can be
seen as a large-scale dynamic environment that combines
distributed computing requirements such as resource
unpredictability [31]. So the job submissions of user tasks
share similar features. The overall view covers requests for
service (jobs) that submitted by the cloud clients to the service
cloud providers. Thus, all job submissions are enclosed and
executed in clouds, a process that is called sandboxing.

The term virtualization in clouds refers to the deployment
of virtual hosts belonging to cloud datacentres instead of
utilizing the core physical resources in order to split the
computational power of the underlying infrastructure. The
fundamental idea is that the actual physical machine (host)
generates and orchestrates various VMs (called guest
machines) through its operating system. The terms host and
guests distinguish the software that is executed in the VMs. In
addition, the host machine contains software for creating and
controlling the virtual parts that called hypervisor. The last one
controls and allows multiple isolated guests to run concurrently
within the same host machine.

In general, a cloud could be considered as a highly dynamic
environment with a high degree of unpredictability of resource
utilization and performance. In such systems the most
important features are related with resource management e.g.
discovery and scheduling [32]. This work is focusing on the
resource scheduling in distributed systems. Failures, latencies
and heterogeneity should always be the main concern for
affecting the scheduling architecture decision of distributed
infrastructures. As a result, the scheduling efficiency of jobs
before their submission is very difficult to be achieved or either
forecasted. Even in the cases of the most complex schedulers a
comprehensive dynamic view cannot always be predicted [30].
Thus, the rescheduling concept takes advantage of the “in the
progress system scheduling status” and performs a highly
dynamic scheduling decision.

This could be achieved by utilizing a migration technique
that is directly related with the virtualization paradigm [2]. The
concept of performing migration is based on the movement of a
job or a set of job tasks to relevant resources in order to
improve load balancing, makespan and higher throughput of
jobs [9]. This work presents a state-of-the-art analysis of
requirements for dynamic migration in cloud environments. By
focusing on related approaches, we present a literature review
study in order to analyze the most important migration
techniques and to highlight its features. This will lead to the
identification of key requirements. Specifically, section 2
presents a discussion of virtualization in clouds. This includes
the two generic classifications of migration procedures in the
area of scheduling, called process migration and live migration.
The rest of the paper is organized as follows. Section 3 details
the review of techniques, section 4 emphasizes the most
important requirements for VM migration and section 5
concludes with a summary and the future works section.

II. VIRTUALIZATION IN CLOUDS
As discussed previously the cloud defines a model in which

software is hosted, run and administered in large web data
centres and provided as a service [1]. By using a variety of web
technologies, both hardware and software Cloud services can
be delivered through the Internet in a seamless manner. Several
potentials of Clouds exist, depending on how the Cloud is
employed and applied to different areas. The main types of
Clouds are: a) Infrastructure as a Service (IaaS), b) Platform as
a Service (PaaS), and c) Software as a Service (SaaS).

Starting with the IaaS, [3] states that Cloud is provided to
the end users as a virtualization capability, and by using a web
interface services can be delivered through a reliable access.
Secondly, the PaaS offering facilitate deployment of
applications without the cost and complexity of buying and
managing the underlying hardware and software [3]. It allows
developers to create their own Cloud applications using
supplier-specific tools and programming languages. PaaS
offers rapid development of web-based application at low cost
in a public or private manner. Finally, the SaaS, allows existing
applications to be run on a cloud supplier’s hardware. With
SaaS, providers authorize applications to users as a service on
demand, through a pay per-use fee.

In any case IaaS, PaaS and SaaS environments could be
considered as a virtual cloud environment, where the
hypervisor plays a vital role in the whole service management
procedure. In general, [4] suggest that two types of hypervisors
exist, the Type 1; native or bare metal hypervisor that is
executed within the physical computer for hosting guests, and
the Type 2; hosted hypervisors that execute guests as
applications on an unmodified commodity OS. Examples of
Type 1 are the Kernel-based VMs (KVM) and Xen, while
examples of Type 2 include the VMWare Server and
Workstation, Parallels Workstations and Oracle VM
VirtualBox. In any case of Type 1 or Type 2, developers make
use of the hypervisor software for developing and deploying
their services (hardware or software) relied upon the generic
needs of the customers or the company’s leasing target, by
always aiming to scalability and flexibility of lightweight
solutions.

At a first glance, the most common used hypervisors are the
Xen and the KVM which both are under the GNU general
public licence. [5] compare both solutions and discuss that Xen
project has been released earlier in 2003 and has been included
in various Linux distributions, while is also the base hypervisor
for Citrix Enterprise solution and Amazon EC2. In contrast,
KVM, has been released in 2007 [4]; it introduced a new way
to manage VMs, that has been proven to be quite efficient
while at the same time particularly lightweight as presented in
[7]. All these years various studies have compared both
hypervisors and authors in [8] suggest that in the case of
comparable performance Xen scalability properties
outperforming KVM. Nevertheless, the choice for one
hypervisor or the other can depend on performance, flexibility
of use, and elasticity of requested services as well as strategic
considerations [5] of the cloud provider.

In the case of management of the overall VM development,
the hypervisor plays an important role as controls the OS and
the deployment of applications within the VM. It should be
mentioned that the hypervisor is located among the physical

host and the VM layers of the layered structure as illustrated in
figure 4. There are two basic types of hypervisors, the Type 1:
bare-metal and Type 2: hosted. Figure 1 demonstrates the Type
1 hypervisor that is located beneath the host hardware layer [6]
and creates VM operating systems (VM-OS).

Hardware!
Hypervisor!

VM-OS! VM-OS! VM-OS!
Apps!

Fig. 1. The Type 1: Bare-Metal Hypervisor Structure

Figure 2 demonstrates the Type 2 hypervisor that is placed
as software beneath the OS layer of the hardware [6].

Apps! Apps!

Hardware!

Hypervisor!
OS! OS!
Apps! Apps!

VM-OS! VM-OS! VM-OS!
Apps! Apps! Apps!

OS!

Fig. 2. The Type 2: Hosted Hypervisor Structure

In general a cloud environment could utilize both
aforementioned types of hypervisors. The next section presents
a detailed discussion of migration techniques with regards to
scheduling.

III. DISCUSSION OF VM MIGRATION TECHNIQUES
Highly dynamic environments by nature cause a high

degree of unpredictability of resource utilization and
performance. In the distributed system the migration has
appeared based on the need of transferring VMs among
resources. The idea is simple, by performing migration of a job
or a set of job tasks to relevant resources the rescheduling
procedure could offer improved load balancing, makespan and
higher throughput of jobs [9]. There are two generic
classifications of migration procedures in the area of
scheduling, called process and live migration.

Process migration is an old studied approach, which
includes the procedure of transferring a process from one
machine (host resource) to another (remote resource). Live
migration, conversely, includes the movement of VMs from
one machine to another while processes are still up and
running. Process and live migration have advantages and
drawbacks however the live migration presents more
challenges because of the large amount of data that needs to be
transferred. In addition, the live migration is computational
expensive solution as it is associated with memory migration.

The following section presents a state-of-the-art discussion
of the most well-known techniques, approaches and systems.
Specifically, we base on both approaches (process and live
migrations) and we present each work and its association to the
scheduling concept for dynamic environments.

A. Process migration
This old approach firstly implemented in 1985 for

operating systems e.g. MOSIX etc. usually was focused on

migration issues for achieving load balancing [10]. In the cloud
computing paradigm process migration could lead to many
potential benefits. The most common need for that is the
transparency of the setting in which downtime is the major
performance factor that makes live migration a more competent
method. As downtime is defined the due time in which a status
of a process changes from running to suspending and running
again. In other words, downtime is the relocation time.
Specifically, process migration is also correlated with the
problem of residual dependencies. This could lead to
unbalanced performance when a process is migrated and is
transferred from an operating system.

In any case, process migration was a top research area in
1980s, as many operating systems were evolved to distributed
operating systems with the capability of stop and relocate
running process tasks and applications [10]. The authors also
discuss that the most generic process migration classifications
are in the level of operating systems, user-level, object-based
and virtualization at the operating system level. The following
presents an analysis of the major process migration efforts.
• Operating systems migration: The most widely known

solutions were the Accent Amoeba Charlotte, Mosix,
Sprite and V. By providing a single image across a cluster
of machines [10] they provide a migration mechanism.
This is mainly based on the kernel design, which provides
transparent execution environment. Although the single
management system simplifies the scheduling process,
these systems share significant drawbacks. First, when a
resource node procedure fails then the remote procedure
fails also. Secondly, the approached have shown low
flexibility and low heterogeneity [10]. Also it is complex
to be implemented as it requires significant improvements
on operating systems.

• User-level migration: In contrast with the kernel context
theme described above, several systems have been
developed to support process migration at the user level.
As there is not kernel support these systems have been
developed for executing long-running applications on a
cluster machine. For that reason the implementation of
process migration on these systems e.g. Condor, CoCheck
libckpt and MPVM is difficult to be achieved as new
services needs to be developed in the operating system.
This drawback minimizes the number of application that
can be used with such systems [10]. Also, this solution
cannot use the inter-process communication set of
methods (IPC) for exchanging data among multiple
processes.

• Object-based migration: Several systems have been
developed that provide migration using object-based
approaches including Abacus, Emerald, Globus, Legion
and Rover. Specifically, these solutions have been
developed as programming languages and middleware
tools for achieving migration. [10] suggest that a reduced
amount of state that required to be recorded and moved is
required. Since new programming paradigms have been
utilized, taking advantage of migration of legacy
applications is minimal. As a result application needs to
be created using new programming languages [10].

The rescheduling concept based on the migration
mechanism it appears to provide a good method for improving

performance as presented in [11]. Job migration has been
presented in [12] with the aim of understanding the impact of
migration of parallel jobs in distributed systems. The authors
suggest that by using migration an extra ability of moving
some or all of the tasks of a job to different resources during
execution. This adds flexibility for filling queue holes which
otherwise remain empty. The work shows definitely benefits
from migration for both gang scheduling and backfilling gang-
scheduling. Specifically, the migration mechanism first vacates
tasks from node to node and then re-instantiate those to the
target set. Finally the authors suggest that migration when
combined with backfilling can be beneficial in terms of
utilization.

In [13] authors present a totally decentralized load balancer.
The model uses the ProActive library for the migration of jobs,
and a multicast channel to coordinate the nodes. It improves the
decision time in non-centralized environment as offers large
stability. However, the method has not good efficiency, the
throughput is medium, and the scalability is low. In general this
method is based on percentage loading at node.

B. Live migration
Live migration or virtual machine migration provides the

ability to transfer VMs from one physical resource (host
machine) to another (remote or destination machine). The
major advantage of this method is that migration happens
without pre-empting execution and without any perceived
degradation [14]. Using this way, the migration is strongly
isolated and there is no need for name-spaces sharing. Also,
downtime is not affected as the whole VM is transferred and
interfaces to VMs are clearly defined. However, migration to a
wide area environment is a challenging issue. The large amount
of data to be transferred makes it tough to be achieved
effectively majorly based on the huge amount of network
bandwidth in addition to the memory capacity needs. In the
following discussion is presented various virtual machine
migration methods and tools with the aim of identifying
advantages and drawbacks of each technique.

In [15] the authors have shown a system that transfers a
computer’s state from one machine to another in a sufficient
amount of time. Specifically they use an example in which an
OS instance is transferred from the work computer to the home
computer using the slow DSL link while the user is driving
back home. By using four optimization techniques namely
copy-on-write, demand paging, ballooning and hashing present
a study in which future systems can take advantage for
designing capsule migration. The capsule state includes the OS
and running application processes. Starting with the copy-on-
write solution authors suggest that “by using copy-on-write to
capture the updates to disks, the amount of state transferred to
update a capsule is proportional to the modification made in the
capsule. Then demand paging, based on the user requests
capture the part of the capsule which is demanded by the user.
Finally, while ballooning minimizes the transferring time by
removing all the unnecessary data from the memory, the
hashing exploits similarities of capsules for speeding-up the
data transfer.

In [16] the authors present the implementation of a system
that uses VM technology to provide fast and transparent
migration of applications. This work, unlikely to previous
attempts, encapsulates the state of a running application. Using

VM, allows the encapsulation of VMs along with the OS in a
fully transparent way for the users. Specifically, this happens
by migration of the memory in order to minimize the
downtime. Initially, the migration process includes selection of
VM to migrate and its destination. Then, while the VM is
running at the source a pre-copying procedure happened of the
memory state. The control of the VM is transferred to the
destination in which it is resumed. Finally, any remaining
memory states are sending to the relocated machine, whilst
removing the dependency of the source machine. Using this
method a high transparency comes at the price of performance
degradation at the time of the memory state migration.

The authors of [17] suggest the use of VMs for the internet
Suspend/Resume project. Particularly, they mimic the opening
and closing of a laptop the users are capable of suspending
work at one machine and resuming to another. The key for
achieving that is the ability of layering VM on a distributed file
system. The initial prototype shows that internet
Suspend/Resume can be successfully implemented on today’s
hardware by suspending VM monitor images in the distributed
filesystems and makes it available to multiple locations.

In [18] the authors have developed a more advanced
version called Coda. Coda clients could accommodate the
whole VM in their caches and support “a clean interface to
exploit advance knowledge of resume site” [18]. The internet
Suspend/Resume project is mainly based on a WAN scenario
and the best case travel time at migration is 45 seconds for 100
Mb/s network. In a more realistic bandwidth speed scenario (1
Mb/s) the downtime is approximately 14 minutes, thus making
this solution effective in terms of functioning but insufficient in
terms of downtime performance.

In [20] the discuss the NomadBIOS, an application which
runs on top of the L4 kernel. L4 kernels are a family of
microkernels usually used to Unix-based operating systems
[19]. NomadBIOS starts an incoming new OS as a new L4 task
and it provides it with a virtualized address space, memory and
Ethernet address. Similarly, in [21] authors present the
NomadLinux, a version of L4 linux. In this case the memory is
paged by NomadBIOS so it is easy to migrate a memory state
from one to another host. Both solutions minimize downtime
by using pre-copy migration, in other words keeping the OS
running after migration and by tracking changes send updates
to the original site through iterations [20]. Those solutions are
considered as host driven migration and benchmarks shows
that performance was generally on parallel with VMWare.

The work of [22] presents the Denali hypervisor for hosting
internet services. The first Deanli effort didn’t support
interpositions and was only able to host a specially developed
OS called “Ilwaco” [22]. This solution also didn’t support
virtualization of MMU (Memory Management Unit). The µ-
Denali is a more advanced version of the Denali, which
includes a stop-and-copy VM migration and support of virtual
MMU. Both systems comparing with the traditional process
migration systems provide better isolation, however, issues
such as security as not yet fully considered.

Authors in [19] present a prototype based on Xen [23]. Xen
provides a platform for allowing plenty OS to run on a single
machine by deploying a variety of service (web-content, media
stream distribution etc.). Their self-migration algorithm is
capable of transferring a copy of its entire state to a different

machine using pre-copy migration. In this way a viable
mechanism for supporting advanced scheduling in clusters and
grids is suggested in which the OS is keeping responsive.
However, the authors do not present comprehensive benchmark
results but it is a more theoretical framework for identifying
migration implications.

The work in [24] suggests that important benefits can be
gained through virtualization in data centres. Specifically, the
authors suggest the Sandpiper, a system that initiates the
migration of data centres by monitoring and detecting hotspots.
The system is based on two strategies, namely black-box and
grey-box. The first one suggests that “all usages must be
inferred solely from external observations and without relying
on OS-level support inside the VM”. The second one uses a
light-way daemon to monitor virtual servers’ statistics.
Through evaluation of a Xen-based prototype, the authors have
shown that VM migration is a viable method for eliminating
simultaneous hotspots involving multiple resources.
Furthermore, their results show that “Sandpiper is able to
resolve single server hotspots within 20 seconds and scales
well to larger, data centre environments”.

Authors in [25] present the Shirako system which deals
with issues – architectural and algorithmic – for resource
management policy. The system is an on demand leasing of
shared resources organized in federated clusters. “The Shirako
architecture factors provisioning and placement where provider
sites retain control over VM placement, but delegate limited
provisioning power to brokers” [25]. In this way the authors
show that migration is important way to solve problems among
policies by supporting advance reservations. Finally, the
system has been extended to support live migration in dynamic
environments including utility and grid computing.

In [26], authors present a recent work on migrating VMs
between clouds. They highlight that need by suggesting that an
emerging requirement for clouds is to enable better service
availability. The proposed migration mechanism aims to
improve efficiency of migrating storage in a wide area. The
great difference of this method with the conventional
approaches is that instead migrating one large piece which
needs to be transferred from beginning to end, it transfers
storage blocks in a planned sequence. Thus, the authors
develop a scheduling algorithm to make use of the VM
workloads to compute the ordering of chunks. The evaluated
results show that the method effectively reduces the extra
traffic.

The work presented in [27] describes a system that enables
live VM migration for a wide-area that uses local storage and
open network connections. Specifically, the system has been
developed as part of the Xen facility for live migration, and
allows the VM to continue running on the source host during
the migration. Using this technique, it guarantees consistency,
not service disruption and not high I/O performance overhead.
In addition, the authors have shown that migration works well,
as it doesn’t significantly decrease the performance of services
running in the VM. However, storage migration here inherently
faces significantly challenges because a much larger size needs
to be moved instead of a memory chunk.

To conclude, the work discussed above surveys process,
live and storage migration solutions. The ability to live-
migration of applications among physical resources is a very

popular solution. This is mainly because of the minimization of
downtime needed for migration including all states (memory,
networks etc.), thus offering a high quality solution for
administrators who for example want to perform maintenance.
In addition, load-balancing among different data-centres can be
achieved through this techniques in a such way that clouds
could cooperate with each other with the aim to provide a high
user experience. The following section discusses a summary of
the advantages and drawbacks of each technique in order to
identify the most important.

IV. ANALYSIS OF SELECTED APPROACHES
This section demonstrates the advantages and drawbacks of

the approaches discussed in the literature. Specifically, by
highlighting their characteristics we conclude to a critical
discussion that forms the requirements for VM migration.

In [12] authors present the migration mechanism that first
vacates tasks from node to node and then re-instantiate those to
the target set. The authors suggest a migration solution that is
combined with backfilling scheduling and can be beneficial in
terms of utilization. The advantages of this technique are:

• Higher acceptance utilization.
• Smaller slowdowns and wait times for fixed utilization.
• Gang scheduling and backfilling improved in an average

opportunity of scheduling tasks in empty wholes in the
queue.

The benchmark analysis is based on metrics related to the
maximum system utilization, job slowdown, acceptance
utilization and waiting times. However, the highlighted
disadvantages of this technique are as follows:

• The maximum utilization does not change from a system
perspective.

• There is no opportunity for improvements when not
enough jobs or not enough holes in the scheduling queue
exist.

In [13] authors presents a solution that is based on
percentage loading at nodes, that uses the ProActive library for
the migration of jobs, and a multicast channel to coordinate the
nodes. The advantages of this technique are:

• Good migration forecasting accuracy.
• Large stability.
• Proactive non-centralized mechanism.
The benchmark analysis is based on metrics related to the

system utilization and throughput. However, the highlighted
disadvantages of this technique are as follows:

• Small resource utilization.
• Medium average throughput.
• Low to average migration efficiency.
In [10] the work presents the Zap, a system to allow process

migration of domains called pods. Zap capsules without
extensive OS changes inspired virtualization. The advantages
of this technique are:

• It does not require significant OS changes.
• Migration happens while preserving open network

connections.
 The benchmark analysis is based on metrics related to the

virtualization cost and virtualization overhead. However, the
highlighted disadvantages of this technique are as follows:

• Limited success primarily because of the difficulty of
encapsulating the state of a running application.

• Uniform operating system configuration across all
participating nodes.

In [15], the work utilizes four different optimization
techniques namely copy-on-write, demand paging, ballooning
and hashing. The study is visionary where future systems can
take advantage for designing capsule migration. The
advantages of this technique are:

• Migration of OS instance happened in sufficient amount
of time.

• The approach reduces the migration times.
The benchmark analysis is based on metrics related to the

migration of propagated software updates and data transferring,
migration time for DSL and LAN links. However, the
highlighted disadvantages of this technique are as follows:

• Mainly optimized for slow DSL networks.
• The OS execution stopped while migration is taking

place.
• Use a specific set of enhancements to reduce the

transmitted image size.
In [16] authors present a system that uses VM technology

to provide fast and transparent migration of applications. This
work, unlikely to previous attempts, encapsulates the state of a
running application. Using VM, allows the encapsulation of
VMs along with the OS in a fully transparent way for the users.
The advantages of this technique are:

• Experiments show that real world memory downtime
takes less than a second.

• Full control of migration procedure and control of impact
of other VMs running states.

The benchmark analysis is based on metrics related to the
CPU reservation, Pre-copy and downtime. However, the
highlighted disadvantages of this technique are as follows:

• Significant resources required transferring VMS.
• The system consumes time (significant number of

seconds) for VM migration even in fast networks.
In [17] the authors use VMs for the Internet

Suspend/Resume project. Particularly, they mimic the opening
and closing of a laptop the users are capable of suspending
work at one machine and resuming to another. The key for
achieving that is the ability of layering VM on a distributed file
system.

• Stores VM monitors images in a network.
• The approach makes image accessible for multiple

locations.
The benchmark analysis is based on metrics related to

suspend, resume times and downtimes. However, the
highlighted disadvantages of this technique are as follows:

• Downtime not efficient.
• Portability is considered as limited.
In [18] the work details a second version of [17] in which

tasks are split into chunks. In this way the Coda distributed file
system will be able to track chunks and store them to regularly
visited nodes. The advantages of this technique are:

• More efficient than [17] in terms of task splitting.
• Accommodate whole VMs in caches.

The benchmark analysis is based on metrics related to the
migration downtime. However, the highlighted disadvantages
of this technique are as follows:

• More appropriate for scenarios associated to wide area
networks.

• High downtime migration (Average 45 seconds).
In [20] authors describe the NomadBIOS that starts an

incoming new OS as a new L4 task and it provides it with a
virtualized address space, memory and Ethernet address for
performing the OS migration. The advantages of this technique
are:

• Reduces downtime using pre-copy algorithm.
• Further optimization through ARP packet.
• It is considered as a complex method for real-time

systems.
The benchmark analysis is based on metrics related to the

migration downtime. However, the highlighted disadvantage of
this technique is related with issues on migration of block
device contents.

The work of [21] presents the NomadLinux. This is a
version of L4 Linux in which memory is paged by
NomadBIOS so it is easy to migrate a memory state from one
to another native Linux host. The advantages of this technique
are:

• Downtime performance in parallel to VMWare.
• The approach offers better scalability.
The benchmark analysis is based on metrics related to the

migration slowdown and downtime. However, the highlighted
disadvantage of this technique is that migration only works for
native Linux machines.

The work of [22] presents the µ-Denali that is a more
advanced version of the Denali, which includes a stop-and-
copy VM migration and support of virtual MMU. The system
addresses the problem of support for developing cooperative
virtual machine services. The advantages of this technique are:

• Handling physical resource management.
• Device namespace virtualization.
• Virtual hardware event trapping and routing.
The benchmark analysis is based on metrics related to the

port table, migration downtime. However, the highlighted
disadvantages of this technique are as follows:

• The solution is linked to a centralized resource sharing.
• Non-live stop-and-copy migration, so a high downtime

could be observed.
The work of [19] presents a self-migration algorithm that is

capable of transferring a copy of its entire state to a different
machine using pre-copy migration. In this way a viable
mechanism for supporting advanced scheduling in clusters and
grids is suggested in which the OS is keeping responsive. The
advantages of this technique are:

• Considers security, accounting, performance, flexibility
and portability.

• The solution keeps the OS responsive during migration.
However, the highlighted disadvantages of this technique

are as follows:
• Self-migration needs to be re-implemented for each type

of guest OS.
• Benchmarks have not been presented in a detailed

manner.

The work of [24] presents the Sandpiper, which is a system
that initiate migration using automation of monitoring tasks
and by detecting hotspots determines, a new mapping of
physical to virtual resources. The advantages of this technique
are:

• Xen live migration for hotspot migration.
• Use of the Distributed Resource Scheduler for load

balancing.
• Improved responsiveness of the system.
The benchmark analysis is based on metrics related to the

workload and CPU utiliztion. However, the highlighted
disadvantages of this techniqueis that it does not support
replication services automation.

In [25] authors present the Shirako, which is an architecture
that enables flexible factoring of resources in federated clusters
by supporting VM migration, based on lease policies using
advanced reservations. The advantages of this technique are:

• Leases are dynamic based.
• Uses cryptographic operations to access clusters.
• Support for live VM migration mechanisms.
The benchmark analysis is based on metrics related to the

number of migrations to placement policies. However, the
highlighted disadvantages of this technique are as follows:

• Solution for a cluster base federation of resources.
• Shirako suspend VM in the case of live-migration cannot

happened for reducing the complexity of the problem
In [26] authors describe a storage migration-scheduling

algorithm for improving storage and input/output performance
during migration. The advantages of this technique are:

• Benefit of scheduling increases when Internet bandwidth
decreases.

• Reduces the amount of extra traffic.
• Benefits of scheduling increases, as the image size gets

larger.
The benchmark analysis is based on metrics related to the

workload migration. However, the highlighted disadvantages
of this technique are as follows:

• Degradation in high amount dirty data environments (file
servers and mail servers).

In [24] the work details the design, implementation and
evaluation of a storage migration system to support transparent
live migration. It allows VM to continue running on the source
machine during migration to achieve stability and consistency
and it does not include additional service disruption compared
to memory-only migration. The advantages of this technique
are:

• Live migration persistent.
• Consistency of VM in the destination machine.
• VM migrated services are not affected.
The benchmark analysis is based on metrics related to the

migration throughput and disk input/output overhead.
However, the highlighted disadvantages of this technique are
as follows:

• Performance affected as the larger number of migrated
size when compared with memory-only migration.

• There is no support for data compression facilities.
• There is no support for batch jobs.
Next, the study is focusing on the summary of requirements

for various VM migration cases.

V. ANALYSIS OF REQUIREMETNS FOR VM MIGRATION
The study correlates the solutions described in section IV.

Figure 3 demonstrates the association of literature review
approaches with the highlighted requirements. The numbers
denote the approach number from the list of references.

21!

13!

10!

16!

17!

18!

20!

Migration mechanism that first vacates tasks from
node to node and then re-instantiate those to the target !

Migration of percentage loading at nodes !

Migration related with process migration of domains
(e.g. pods)!

Migration with encapsulation of the state of a running
application !

Migration related with mimicking suspend and resume
of real world computing machines !

Migration related with tasks splitting into chunks !

21!
Migration related with L4 Linux for migrating memory
states !

Migration of pre-copy migration of states !19!

Storage migration-scheduling algorithm !24!

26!
VM migration on flexible factoring of resources in
federated clusters !25!

Migration related with copy-on-write, demand paging,
ballooning and hashing algorithms!15!

Fig. 3. The analysis of the literature review approaches

The research objectives are discussed as follows:
• Migration mechanisms that first vacates tasks from node

to node and then re-instantiate those to the target set offer
higher acceptance utilization and smaller slowdowns and
wait times for fixed utilization as in [21].

• Migration of percentage loading at nodes offer good
migration forecasting accuracy and stability as in [13].

• Process migration of domains (e.g. pods) does not require
significant OS changes as in [10].

• Encapsulation of the state of a running application show
that real world memory downtime offer optimized
performance (migration consumes less than a second) as
in [16].

• Replication of suspending and resuming of real world
computing machines offers the ability to make image
accessible for multiple locations as in [17].

• Tasks splitting into chunks are more efficient than
mimicking the solutions of suspend and resume of real
world computing machines and could accommodate
whole VMs in caches as in [18].

• L4 Linux for migrating memory states offer optimized
values for downtimes and offer better scalability as in
[20] and [21].

• Stop-and-copy VM migration offers efficient handling of
physical resource management as in [22].

• Transferring a copy of its entire state to a different
machine using pre-copy migration rely on a solution that
keeps the OS responsive during migration as in [19].

• Storage migration-scheduling algorithm reduce the
amount of extra traffic thus decrease the Internet
bandwidth as in [24] and [26]. For example [24] uses the
Distributed Resource Scheduler (DRS) for load
balancing.

• Architectures that enable flexible factoring of resources in
federated clusters by supporting VM migration offer
leasing in dynamic based cases and live VM migrations
as in [25].

• Copy-on-write, demand paging, ballooning and hashing
offer migration of OS instance in sufficient amount of
time. For example the work of [15] describes an approach
that approach with four scheduling mechanism to reduce
the migration times.

To conclude, the applicability of the VM migration in
clouds is particular valuable for service consolidation and
isolation scenarios. In particular, the VM migration will be
useful in order to organize services from multiple providers to
be collaborative. A flexible solution includes the migration
VMs among IT infrastructures in order to enhance the agility in
improving the quality of service in cases of system overload.

VI. CONCLUSION AND FUTURE STEPS
The virtualization approach expands the cloud capabilities

with the aim of achieving a more transparent setting for users.
In such settings, one of the most important design issues is the
dynamic-ness of the system, thus VM migration could offer the
required infrastructure to allow transferring of virtualized parts
among clouds. The future directions of this work are related
with the interoperable cloud setting namely as inter-cloud.
Through an effective VM migration inter-cloud elasticity and
scalability will increase its efficiency.

So, a more extended interoperable environment of clouds
will offer additional advances along with elasticity and
scalability. This includes new services to users in a coordinated
workload management setting. Specifically, we aim of
enhancing the Inter-Cloud Meta-Scheduling (ICMS) [28]
model with a VM migration tactic and perform experiments in
the SimIC toolkit [29]. Further to this, the Message
Exchanging Optimization (MEO) model [33], [34] will offer
the require framework to allow a more sophisticated and light-
weighted mechanism for VM migration. The purpose is to
develop VM migration in an inter-cloud setting and to allow
service distribution to achieve better elasticity and scalability.

REFERENCES
[1] S. Sotiriadis, N. Bessis, P. Sant, and C. Maple “From Grids to Clouds: A

collective intelligence study for inter-cooperated infrastructure”s, The
Fourth International Conference on Advanced Engineering Computing
and Applications in Sciences (ADVCOMP-2010), IARIA, 25 – 30
October 2010, Florence, Italy, pp.: 142-147.

[2] S. Sotiriadis, N. Bessis, F. Xhafa and N. Antonopoulos, “Cloud Virtual
Machine Scheduling: Identifying Issues in Modeling the Cloud Virtual

Machine Dynamic Instantiation”, 6th International Conference on
Complex, Intelligent, and Software Intensive Systems (CISIS-2012),
Palermo, July 4-6 2012, pp. 233-240.

[3] The Future Of Cloud Computing, Available at:
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf, Accessed
at 24/02/2013

[4] P. Li, and L. W. Toderick, “Cloud in cloud: approaches and
implementations”. In Proceedings of the 2010 ACM conference on
Information technology education (SIGITE '10). ACM, New York, NY,
USA, pp. 105-110

[5] D. Cerbelaud, S. Garg and J. Huylebroeck “Opening the clouds:
qualitative overview of the state-of-the-art open source VM- based cloud
management platforms”. In Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware (Middleware '09). Springer-
Verlag New York, Inc., New York, NY, USA, , Article 22 , 8 pages

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield “Xen and the art of virtualization”.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 164–177, New York, NY, USA

[7] I. Habib “Virtualization with kvm”. Linux J., 2008(166):8
[8] J. N. Matthews, T. Deshane, Z. Shepherd, M. Ben-Yehudah, A. Shah,

and B. Rao, “Quantitative comparison of xen and kvm”. In Xen Summit,
June

[9] K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak, and J. Pukacki
“Dynamic grid scheduling with job migration and rescheduling in the
GridLab resource management system”. Sci. Program. 12, 4 (December
2004), pp. 263-273.

[10] S. Osman, D. Subhraveti, G. Su, and J. Nieh “The design and
implementation of Zap: a system for migrating computing
environments”. SIGOPS Oper. Syst. Rev. 36, SI (December 2002), pp.
361-376.

[11] H. Dail, O Sievert, F Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J.
Dongarra, C. Liu, L. Yang, D. Angulo, and I Foster “Scheduling in the
Grid application development software project. In Grid resource
management”, Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz
(Eds.). Kluwer Academic Publishers, Norwell, MA, USA pp. 73-98.

[12] Y. Zhang, H. Franke, J. E. Moreira, and A Sivasubramaniam “The
Impact of Migration on Parallel Job Scheduling for Distributed
Systems”. In Proceedings from the 6th International Euro-Par
Conference on Parallel Processing (Euro-Par '00), Arndt Bode, Thomas
Ludwig, II, Wolfgang Karl, and Roland Wismller (Eds.). Springer-
Verlag, London, UK, 242-251.

[13] J. Bustos “Robin hood: An active objects load balancing mechanism, for
intranet”. In Proc. of Workshop de Sistemas Distribuidos y Paralelismo,
Chile, 2003

[14] C. Ward, N. Aravamudan, K. Bhattacharya, K. Cheng, R. Filepp, R.
Kearney, B. Peterson, L. Shwartz, C. C. Young "Workload Migration
into Clouds Challenges, Experiences, Opportunities," Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on CLOUD 5-10
July 2010, pp.164-171

[15] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M.
Rosenblum “Optimizing the migration of virtual computers”. In
Proceedings of the 5th symposium on Operating systems design and
implementation, (OSDI '02). ACM, New York, NY, USA, pp. 377-390.

[16] M. Nelson, B.-H. Lim, and G. Hutchins “Fast transparent migration for
virtual machines”. In Proceedings of the annual conference on USENIX
Annual Technical Conference (ATEC '05). USENIX Association,
Berkeley, CA, USA, 25-25.

[17] M. Kozuch, and M. Satyanarayanan “Internet suspend/resume”. In
Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, 2002

[18] M. Kozuch, M. Satyanarayanan, T Bressoud, C Helfrich, and S
Sinnamohideen “Seamless Mobile Computing on Fixed Infrastructure”.
Computer 37, 7 (July 2004), pp.65-72.

[19] J. Gorm H. and E. Jul. 2004 “Self-migration of operating systems”. In
Proceedings of the 11th workshop on ACM SIGOPS European
workshop (EW 11). ACM, New York, NY, USA, Article 23

[20] J. Liedtke “On micro-kernel construction”. In Proceedings of the
fifteenth ACM Symposium on Operating System Principles, pages 237-
250. ACM Press, 1995

[21] H. Hartig, M. Hohmuth, J. Liedtke, and S. Schonberg. “The performance
of micro-kernel-based systems”. In Proceedings of the sixteenth ACM
Symposium on Operating System Principles, pages 66-77. ACM Press,
1997.

[22] A. Whitaker “Building System Services with Virtual Machine
Monitors”. Ph.D. Dissertation. University of Washington, Seattle, WA,
USA. AAI3199790.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield “Xen and the art of virtualization”.
In Proceedings of the nineteenth ACM symposium on Operating systems
principles (SOSP '03). ACM, New York, NY, USA, pp. 164-177.

[24] T. P. Wood, A. Shenoy, A. Venkataramani and M. Yousif “Black-box
and Gray-box Strategies for Virtual Machine Migration”. In Proceedings
of the Fourth Symposium on Networked System Design and
Implementation (NSDI ’07), 2007.

[25] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. “Virtual Machine
Hosting for Networked Clusters: Building the Foundations for
"Autonomic" Orchestration”. In Proceedings of the 2nd International
Workshop on Virtualization Technology in Distributed Computing
(VTDC '06). IEEE Computer Society, Washington, DC, USA

[26] J. Zheng, T. S Eugene Ng, and K. Sripanidkulchai “Workload-aware live
storage migration for clouds”. In Proceedings of the 7th ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments (VEE '11). ACM, New York, NY, USA, pp. 133-144.

[27] R. Bradford, E. Kotsovinos, A. F., and H. Schiberg “Live wide-area
migration of virtual machines including local persistent state”. In
Proceedings of the 3rd international conference on Virtual execution
environments (VEE '07). ACM, New York, NY, USA, pp. 169-179.

[28] S. Sotiriadis, N. Bessis, N. and Antonopoulous, N. “SimIC: Designing a
new Inter-Cloud Simulation Platform for Integrating Large-scale
Resource Management”. In proceedings of the 27th IEEE International
Conference on Advanced Information Networking and Applications
(AINA-2013), March 25-28, Barcelona [to appear]

[29] S. Sotiriadis, N. Bessis, P. Kuonen, and N. Antonopoulous “The Inter-
cloud Meta-scheduling (ICMS) Framework”. In proceedings of the 27th
IEEE International Conference on Advanced Information Networking
and Applications (AINA-2013), March 25-28, Barcelona [to appear]

[30] N. Bessis, S. Sotiriadis, F. Xhafa, F. Pop And V. Cristea “Meta-
scheduling Issues in Interoperable HPCs, Grids and Clouds”,
International Journal of Web and Grid Services, InderScience (SCI
JSCR IF 2010: 0,978 – SJR: Q2 [Computer Networks and
Communications, Software]), Volume 8, Issue 2, Inderscience, ISSN:
1741-1106, pp.: 153-172.

[31] S. Sotiriadis, N. Bessis, Y. Huang, P. Sant and C. Maple “Defining
Minimum Requirements of Inter-collaborated Nodes by Measuring the
Weight of Node Interactions”, 4th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS-2010),
15th-18th February, Krakow, pp.: 291-298.

[32] S. Sotiriadis, N. Bessis, Y. Huang, P. Sant and C. Maple “Towards to
Decentralized Grid Agent Models for Continuous Resource Discovery
of Interoperable Grid Virtual Organizations”, International Workshop on
Distributed Information and Applied Collaborative Technologies
(DIACT-2010), in conjunction with the 3rd International Conference on
the Applications of Digital Information and Web Technologies
(ICADIWT-2010), 12th -14th July 2010, Istanbul, pp.: 170-175.

[33] N. Bessis, S. Sotiriadis, F. Pop and V. Cristea “Optimizing the Energy
Efficiency of Message Exchanging for Service Distribution in
Interoperable Infrastructures”, 4th IEEE International Conference on
Intelligent Networking and Collaborative Systems (INCoS-2012),
September 19-21 2012, Bucharest, Romania, ISBN: 978-0-7695-4808-1,
pp. 105-112

[34] N. Bessis, S. Sotiriadis, F. Pop and V. Cristea “Using a Novel Message-
Exchanging Optimization (MEO) Model to Reduce Energy
Consumption in Distributed Systems”, Simulation Modeling Practice
and Theory Elsevier, 2013 (in press)

