
Optimizing the energy efficiency of message exchanging for
service distribution in interoperable infrastructures

Nik Bessis1, Stelios Sotiriadis1, Florin Pop2, Valentin Cristea2

1School of Computing & Maths, University of Derby, Derby, United Kingdom
2University “Politehnica” of Bucharest, Bucarest, Romania

(n.bessis, s.sotiriadis)@derby.ac.uk (florin.pop, valentin.cristea)@cs.pub.ro

Abstract — Optimizing the competence of message exchanging
algorithm in large-scale grids and inter-clouds could be proven
to be a crucial factor in achieving an efficient resource
management. Traditional solutions usually incorporate either
probabilistic or flooding message exchanging techniques
mainly due to the dynamic and unpredictable formation of the
infrastructure. Our vision encompasses a total decentralized
nodes topology in which message exchanging algorithm allows
dissemination of communication messages within a decoupled
node formation setting. We consider various e-infrastructure
nodes that exchange simple messages with linking nodes
regarding resource competence for executing certain service(s)
requirements. The optimization criterion is to improve the
energy efficiency of the network performance for message
exchanging in two cases as follows. Firstly, a requester sends
messages to all interconnected nodes and gets messages only
from resources available to execute it. Secondly, the requester
sends one message for all of the jobs of its local pool and gets a
respond from available nodes, and then obtainable resources
are ranked and hierarchically categorized based on the
performance criterion e.g. latency competency. The algorithm
is simulated and results obtained are very supportive.

Keywords: Message exchanging, grids, inter-clouds,
decentralized message passing, energy efficient resource
management.

I. INTRODUCTION
This work is motivated by the message passing

conceptual design and its algorithms that include a form of
communication between different processes and objects in
distributed and parallel computing. Our vision is inspired
from that model and encompasses a fully decentralized
topology of collaborated and decoupled nodes suitable for
resource management in large scale and dynamic grids and
inter-clouds. In such settings, we aim to explore the
message exchanging framework among nodes as happened
in message passing algorithms that allows communication
among processes of parallel hosts during the actual
processing time. This implies that processes among different
nodes transfer data (sending and receiving messages)
through shared memory areas.

Various algorithms and approaches have been designed
with the aim to optimize the efficiency of the message
passing algorithmic models. However, most of these works
are strongly influenced and driven by congestion parameters
of the network topology as well as are related with a
homogeneous and tightly coupled setting. In addition, for
the case of grid computing, the message-exchanging

framework is considered as a generic collective approach
wherein all nodes could communicate with each other.
Specifically, nodes request for resources by broadcasting
messages to any interconnected node; then gather responses
and move to the next resource management step (resource
allocation etc.) [8]. In general, message passing and
message exchanging methods are two different methods as
the former is about exchanging messages among processes
[10], while the latter is related to message swapping among
computing nodes.

Although message passing and message exchanging are
considered as two different schemes, nonetheless both share
the same fundamental message dissemination algorithms
(e.g. All-to-All [2], allgather [1]). Thus, in this work we
present an optimization algorithm with regards to the
consumed energy efficiency. In this study, energy efficiency
is defined as the consumed energy (KWH) and the
computational performance of the network for executing
detailed demands (average execution times). In advance, our
proposed solution is based upon user specified services
(jobs or cloudlets). Herein, the proposed solution suggests
that by minimizing the number of messages (sent and
received) we can achieve an optimization of the job
execution performance. For demonstrating the effectiveness
of the approach we utilize an inter-cloud setting [6]. In
general, the inter-cloud approach expands the cloud
capabilities for achieving a wider distribution, yet by
retaining global resource utilization equilibrium among
various resource pools [5].

In this e-infrastructure we develop a solution for
exploring the latency of the system due to message
exchanging prior to the execution of services as submitted
by their users when random topologies are taking place. The
nodes are components of the inter-cloud such as users,
brokers, and cloud datacentres that interchange messages
during service life-cycle. In addition, we implement our
algorithm to achieve a two-fold solution. Firstly, a node
sends messages based on the All-to-All algorithm (all nodes
send to all interconnected nodes) and responses are
collected back only from resources available to execute it
[2]. Secondly, a node sends a message for all of the jobs
contained within the local pool and gets a response only
from available nodes to execute the demand. Lastly
available nodes are ranked and hierarchically categorized
based on the performance criterion of latencies in service
execution times. The rest of the paper is organized as
follows. Section II presents the related works in the area of
message passing and message exchanging algorithms.

2012 Fourth International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-4808-1/12 $26.00 © 2012 IEEE

DOI 10.1109/iNCoS.2012.16

105

Section III presents the conceptual design model, section IV
the algorithms of the message exchanging setting, section V
the scenario cases and section VI the simulation results.
Finally, section VII concludes the study with a discussion of
the remarks and future research steps.

II. RELATED WORKS
Over the years a variety of message exchanging

algorithms have been developed in order to address issues
depending on the actual topology of the setting. Similar
other solutions consider the number of packets to be moved
among processors of cluster based parallel and grid
computing systems. In such cases the Message Passing
Interface (MPI) [13] has been introduced by the academia as
a standardized portable message passing system. Different
algorithms are related with the MPI basic solutions related
with the point-to-point communication and the collective
communication approach. The simplest of the cases is the
point-to-point in which the processor of a node machine
sends a message to another. This includes a diversity of
variations in terms of message exchanging properties. For
instance, the synchronous case includes the sending of
completion information while the asynchronous contains
data regarding the time that the message left from the first
node. In addition, asynchronous allows high dynamic-ness
of the system.

Others include the blocking operation that only allows
messages to return after the completion of the process in
contrast to the non-blocking operation that tolerates the
return of messages straight away [10]. However, this
solution is considered appropriate for small scale clusters
due to the one-to-one communication pattern. A different
approach is the collective communication that involves the
routing of numerous processes at a time. This includes
operations like the broadcasting (one to many
communications). This solution increases the design
complexity as it encompasses the synchronization of
processes. Nevertheless, it is a more advanced approach
which could be applicable for largeer scale distributed
infrastructures. In general, by using broadcasting named as
“broadcast call” one node sends a message to all nodes of
the group. The “reduce call” procedure is called by the MPI
at the end for collecting information from all nodes’
processors regarding the desired operation and stores the
result on one node [2].

Various collective communication procedures include
different routines for implementing different behaviors as
contained in [13]. This includes the All-to-All, the allgather,
the BCast, AllReduce and other functions. As this work is
related with message exchanging in large scale
infrastructures (grids and inter-clouds) we consider the
collective pattern solution as the most appropriate mainly
because it involves complete exchange in a one to many
model. Initially, the All-to-All model allows complete
information among all the node processes of a group.
Similarly to the allgather the latter solution collects
processes and then broadcasts (BCast) to each conducted
node. However, as the scale of the setting increase in
number of nodes, the efficiency of the methods performance
is influenced significantly due to the overcrowding of

network resources. Thus, the reduce functions can minimize
the number of messages by decreasing data and
broadcasting again.

A number of theoretical models have been further
developed in order to avoid the network congestion [1]. For
example, the spreading simple algorithm allows a node to
send data to node (p+i) where p is the process and i the
iteration and, receive data from node (p-i+N) mod N where
N is the number of processes [1]. A different approach is the
one presented in [3], named as ring/bucket/circular
algorithm. Specifically, at each iteration i a process p sends
data to a node with an index (p-i+1+N) mod N to the rights
neighbor of the list. The recursive doubling algorithm [13]
requires less time as the number of total transfers is reduced.
The MPI make use of the MPICH [11] to recursively reduce
number of messages by utilizing a criterion; when the
number of processes is a power of 2 uses recursive doubling
for small message sizes. Next, for the rest of the messages
(large size) it uses the ring algorithm to achieve message
dissemination. However, this solution aim to small-scale
cluster based parallel computing systems. Authors in [2]
propose that the most of these algorithms have been
designed for homogeneous and tightly coupled systems.

In the case of high heterogeneous and de-coupled
settings (e.g. grids and inter-clouds) solutions divide
network into hierarchies. The MPICH-G2 [12] presents
twofold algorithms to gather data up the hierarchy using
recursive doubling and then broadcast these data by
binomial broadcast (according to a probability factor).
Similar the MagPIe presented in [4] includes a three stages
algorithm to first allgather data at coordinators, second
gather data among coordinators and, third broadcast data by
coordinators using again a binomial broadcast. The major
drawbacks of these are the fact that follows static network
hierarchical schemes in modeling decisions [10]. In
addition, data transmission is repeated at coordinators thus
keeping bandwidth values in high layers of hierarchy in low
levels [1].

In contrast with these approaches the work of [1]
illustrates an algorithm that is network topology aware and
adaptive to various network loads. This solution follows the
transient clustering of nodes based on network
characteristics. In a similar vein, [2] focus on an alternative
algorithm for minimizing the number of steps through a
wide-area network. They also claim that the reduction has a
direct impact on the performance modeling by minimizing
the factors that directly interfere the wide-area
communication. Although efficient algorithms have been
developed for specific networks, a generic model for
heterogeneous and decoupled nodes has been proven to be
complex to be designed. This is mainly because of the
dynamic nature of the resources. In advance, an important
requirement to be considered is the real-time information
processing and the elasticity and scalability of the services
(jobs) submitted by the users.

III. CONCEPTUAL DESIGN OF THE MESSAGE EXCHANGING
ALGORITHMIC MODEL (GRAPH THEORY)

This section presents the conceptual design of the
message exchanging algorithmic model for inter-cloud. To

106

illustrate this setting we employ graph theory modeling for
achieving two-fold benefits. First characterizing internal
components into graph vertices (nodes) and secondly
showing the interconnectivity structure among pairwise
nodes known as edges by means of graph theory theorems.
In view of that, let assume that an inter-cloud is a graph
� � ��� �� which at an initial stage is an undirected graph
with nodes 	
� 	
 � � and�	

 � 	
. If 	
 communicates
with 	� there is a trail among nodes called��
. In our case
we aim to a directed graph, thus �
 is considered as a walk
that connects 	
�and 	��without linkage restrictions
(communication can be repeated). Thus, the analysis of the
inter-cloud life-cycle will allow us to identify the crucial
components and eventually map each of which into graph
theory nodes. In advance, we will identify the
communication links (edges-walks of the graph).

An inter-cloud is comprised of a set of sub-clouds that is
constructed in a fundamental hierarchical form. This
includes a data-center that manages physical machines
(hosts) and generates a number of virtual machines within a
host(s) for sandboxing user demands. Let us assume that a
user request for certain requirements contained into a
service level agreement (e.g. computational power) using a
cloud interface. Then the cloud assigns a transitional
component per user to act as intermediate in the
communication among user and cloud. This component is
named as meta-broker and acts on-behalf of user by
ensuring that the cloud does not violate the established
service level agreement. For each of the users the cloud
system generates a number of meta-brokers by repeating the
same process.

When the system extends to an inter-cloud, it is assumed
that various clouds could establish communication and grant
authority to meta-brokers for message exchanging through
inter-relationships inspired by the meta-computing
paradigm [8]. Specifically, during the meta-broker
development the cloud provides a list of inter-collaborated
meta-brokers that have been already initialized at a previous
stage. We detail the modeling of this approach in [7]. Next
we focus on the mapping of internal components to graph
theory initiatives. The next sections present the theorems of
the inter-cloud graph theory for mapping components
towards the statement of the message exchanging model.

A. Theorem 1. The directed graph formation
 Let assume that a user �
 establishes connection with a

cloud �
 meta-broker ��
�and sends a request message for a
number of services �
 named as cloudlet. Then ��

delegates a list of inter-linked meta-brokers ������

forwards this request to an inter-connected meta-broker ���
where����� � ������
. We assume that at a previous phase
a user �� executes a number of services in a cloud �� meta-
broker ���. In addition, each meta-broker accesses a local
datacenter (����
�� ����� of the cloud for quoting resource
availability. Thus, at this stage we have a directed graph G
that represents the inter-cloud setting wherein
�
� ��� ��
� ������ ����
�� ����� � � and��
 � ��
� ��
��� �� � ���� ����,��� � ���
� ���
��,��� � ����� ������
wherein of �
� ��� ��� �� � � of ���� ��. It should be
mentioned that �
� �� are repeated as many times as the

number of services submitted by the users. Figure
1demonstrates the graph theory nodes and edges by
mapping internal inter-cloud components.

Cloud
1

Cloud
2

Figure 1: The inter-cloud graph theory mapping model

B. Theorem 2. The sub-graphs formation
In an inter-cloud graph � � ��� �� we define a sub-graph

�
 � ��
� �
��and a sub-graph �
 � ��
� �
��to be the sub-
clouds of inter-cloud graph. Thus,��
 � �, �
 � � and
�� � �, �� � � wherein each edge of �
�and �� are incident
with vertices in �
and �� respectively. Each sub-graph
represents a sub-cloud internal graph. That includes multiple
users (nodes) that each of which submits multiple services
with different requirements. These are directly sent to each
user customized meta-broker that again re-forwards a
request for availability to interlinked meta-brokers as well
as its internal resources (datacenter). Then, the responding
nodes receive the requests and decide whether or not their
datacenters could execute the job or not by generating a
ranking property related with the competence of the
datacenter computational power. Specifically, the ranking
approach is presented in directed graphs by the Hamiltonian
path approach as in [14]. In our solution we assume that
meta-brokers collaborate in a Hamiltonian path setting with
other meta-brokers and datacenters (each node visits
contacted node only ones).

C. Theorem 3. The ranking tournament
Our model incorporate this solution by assuming that a

graph���� �contains sub-graphs �
� ���wherein��
 � �����and
�� � ��� are directed graphs that contain ��vertices. For
each vertices�	
� 	� � ���� �� there is an edge��
� ��� implied
from a ranking tournament of responding node. In such case

107

a requesting node asks every responding node exactly once
by sending and receiving messages, then it ranks the
responding nodes by a ranking criterion (e.g. latency of
responding time, availability, competence of computational
resources, priorities, etc.). The requesting node collects
addresses of responding nodes from an internal list. Then it
generates paths that are bi-directed walks named as
� �wherein � ! "�that contains � # $�edges e.g. ��
� ����� ���� ���� % �� &
� � �. A node is part of the list only and only
if�� � �. In any other case � is a vertex that does not appear
in�� , thus it is not a walk.

D. The model of message exchanging
The message exchanging solution maps the graph theory

and Hamiltonian path (for meta-brokers) characteristics as
follows. We assume a send request message to a meta-
broker as presented in Theorem 1. The last one forms the
requesting node that forwards resource competence demand
to interlinked meta-brokers that are members of sub-clouds
as illustrated in Theorem 2. At last, according to Theorem 3,
contacted meta-brokers rank resources according to a
criterion and send responses back to the requesting node.
This case represents the traditional inter-cloud
communication pattern for message passing in which nodes
create a transient graph according to cloud suggestions for
collaboration. In advance, the message passing model is an
All-to-All solution if the user submits one job, while it is
transformed to allgather approach [1] when a user submits
more than one request. Thus this forms the energy
efficiency message exchanging algorithmic statement.

A requesting node (user) sends a message that contains
a requirement specification to a responding node (contacted
meta-broker) that contains all the cloudlets require to be
executed. The last one communicates with interlinked meta-
brokers by sending a message that encompasses the list of
jobs. The contacted meta-brokers rank internal resources
for each received job by executing a performance criterion
function concerning the latency of components (meta-
brokers, datacenters) on replying back. Then they send a
message that contains only the jobs that are capable of
executing enclosed in the initial list. The requesting node
collects acknowledgements from responders and classifies
nodes by ranking each of which through a tournament
operation. Finally, the meta-broker moves to the resource
allocation step.

 This model offers significant advantages over the
traditional solutions presented in section 2 as incorporates
dynamic management features as follows:
a) It supports a diversity of variations in terms of message
exchanging properties (e.g. performance criterion).
b) It allows synchronous meta-brokering inter-linking due a
user request.
c) Collectively distributes the whole set of jobs instead of
each separately.
d) It gets responses only from high ranking resources per
job requirement.
e) It offers high adaptive-ness to various workloads as
request resource availability during run-time.

f) It supports message exchanging of the inter-cloud
topology (topology awareness).
g) It deals with user specified services, thus service-
orientation message exchanging.
h) It executes real-time information retrieval as requests for
availability happen during the message exchange life-cycle.
i) It offers fully decentralization (for meta-brokers) and
elasticity due to the variety of user defined tasks as well as
heterogeneity by sandboxing tasks in virtual machines

Relevant algorithm pseudo-codes are discussed next.

IV. THE PROPOSED ALGORITHMS
This section presents the algorithmic model of the

message exchanging approach between components (nodes)
of the inter-cloud. This includes a two-fold solution that
incorporates the request and response case for users and
meta-brokers respectively. In addition, we present the
performance criterion for ranking resources (according to
theorem 3) which is the latency of the brokers and
datacenters on replying back. Thus, we focus onto the
message exchanging procedure that exists prior to the
resource allocation process that currently is out of the scope
of this study.

A. The User Message Request Algorithm
The user requests for resources by sending a message

with the cloudlet specification (e.g. job length, processor
number etc.) for each of all the jobs. This takes the form of
an array list �'()*+(,-./� 01,'2� where / is the identification
number of the cloudlet and spec is the specification of the
cloudlet). Algorithm I shows the procedure which accepts
the user request as an input and waits for the meta-broker to
function for a specific amount of time.

Algorithm I: User Message Request
1. function userRequest(message)
2. input: userCloudleti

3: for each userCloudleti � userListi
4: create cloudleti.speci(length, mips, pesNumber)
5: output: mi = userCloudletList(cloudlet[i, speci])
6: end for
7: send userRequest(message) to meta-broker
8: wait for response(interval x)
9: if interval x not violated then
10: collect mbrResponse
11: start cloudlet life-cycle
12: end if
13: end function

Specifically, the algorithm creates the cloudlet
specification for each service. Then it generates a two-
column array list wherein the first column denotes the id of
the cloudlet and the second the specification. Finally, the list
is sent to the meta-broker(s) and the user waits for
response(s) during a definite amount of time (interval x). If
the interval is not violated it implies that the meta-broker
responds on time and the cloudlet life-cycle starts.

108

B. The Meta-Broker Message Request-Retrieve Algorithm
The algorithm II presents the meta-broker message

request-retrieve pseudo-code. The meta-broker gets as input
the user cloudlet list formed in algorithm I. Then for each
interlinked meta-broker it sends a message by forwarding
the list collected from the user. Also, this is sent to the
internal datacenter and responses are collected. After a
specific interval the responses from contacted meta-brokers
are collected and a ranking procedure is started according to
a specific latency criterion as given from formula (1). This
is the degree of a vertex of the graph G which represents the
number of edges incident to the vertex, with loops counted
twice (request and response). We assume that at least one of
the cloudlets could be executed (�+,3�4567�
 8�,
consequently the message is counted twice since one
message is returning always back.

9:-,;'<=>?@ � A +,3�4567���$�
=?>@���=>?

 This is the performance measure or the time elapsed till
the response of the node. Specifically, the study will explore
this property in the experimental analysis section. Finally,
the required resource is set and the algorithm moves to the
resource allocation mechanism. The last one is currently out
of the scope of the study, thus we assume that this procedure
sends the VM address to the user. A detailed discussion on
this is illustrated in [15].

Algorithm II: Meta-Broker Message Request-Retrieve
1. function mbrRequest(message)
2. input: userCloudletList(cloudlet[i, speci])
3: input: mbrResponse(message)
4: set message = userCloudletList(cloudlet[i, speci])
5: for each requestmbri � mbrList
6: send mbrRequest(m)
7: end for
8: send mbrRequest(message) to internalDC
9: get internalDC response
10: start trigger for mbrResponse(message)
11: set triggerInterval = 0 and wait for response(interval y)
12: if triggerInterval = y then
13: set flag = TRUE
14: end if
15: if interval y not violated and flag=TRUE then
16: run ranking(LatencyCriterion, rankTable[i, rank])
17: set results
18: end if
19: go to resource allocation mechanism
20: output: cloudlet life-cycle
21: send cloudlet life-cycle to user
22: end function

C. The Meta-Broker Message Response Algorithm
Algorithm III illustrates the meta-broker message

response case. Specifically, the algorithm gets as input the
user cloudlet list for the meta-broker and requests for
resource availability from internal datacenter. Then, for each
cloudlet executes a ranking procedure and places results in a
ranking table (a two column array that holds in the first
column the id of the job and in the second column the
ranking value). It should be noted that the ranking value is

considered according to a) the availability of the datacenter
to execute rthe equest, b) the latency of the datacenter in
replying back and c) a coefficient variable for controlling
further simulation characteristics (e.g. reservations). At last
a response is send back to the requester only in the case of
resource availability.

9:-,;'<BC@ � �$" � A +,3�+'7� D��A +,3�+'7�� � '
E

7�E
�"�

BC@�F

Specifically formula (2) computes the latency of the
contacted meta-broker as the sum of the responses sent
multiplied by ½. This denotes the half loops as the
algorithm sends messages but not all the nodes respond
back. The nodes that reply are given by the variable�:. Thus
the sum of the vertices that respond are summed up and
added to the half-walks vertices. This value is again
multiplied with a coefficient property ' that represents
priority jobs or advance reservation mechanisms etc.

Algorithm III: Meta-Broker Message Response
1. function mbrResponse(message)
2. input: userCloudletList(meta-brokeri, cloudlet[i, speci])
3: send mbrRequest(message) to internalDC
4: get internalDC response
5: for each userCloudleti � userListi
6: run rankingProcedure(PerformanceCriterion)
7: create rankTable[i, rank]
8: output: message = rankTable
9: for each i� rankTable
10: send mbrResponse(message)
11: end for
12: end for
13: end function

Finally, the total latency from the perspective of a user is
calculated from formula (3) which represents the sum of
meta-broker and datacenter latency for the request / (as the
set of cloudlets initially submitted).

9:-,;'<GHI?@ � 9:-,;'<=>?@ D 9:-,;'<BC@ (3)

To conclude in this section we have presented the
algorithmic model as well as the latency functions of the
message exchanging system according to the degree of a
directed Hamiltonian graph. Next, we discuss the scenario
cases for multiple user submissions.

V. SCENARIO CASES
This section presents the scenario cases of the inter-

cloud system for demonstrating the message exchanging
procedure and the topology awareness and adaptive-ness of
our approach. Specifically, we demonstrate two cases of the
inter-cloud each of which covers two different topologies as
follows. The first setting encompasses a small number of
users that submit various workloads to the inter-cloud
system. In this case few meta-brokers collaborate for
exchanging messages. The second case includes a large
number of users that submit one service, so the setting
contains a complex meta-brokering topology.

109

A. Multiple cloudlet submissions
Firstly, we demonstrate a graph the

multiple cloudlets submitted by two users.
cloudlets are clustered in a list from the m
and a dissemination message by sending
broker (e.g. mbr2). Figure 2 illustrates the m
submission phase. This is a realistic scena
and enterprise clients that require executin
in a private company’s cloud system (e.g.
leases VMs for its employees to amplify
activities). It should be mentioned th
configuration comprises identical VMs.

Figure 2: The multiple cloudlets submi

In this topology, the following message
in this specific topology.
1. Multiple cloudlets submitted by user
resource execution trough a request message
2. Meta-broker mrb1 forms a list with
forwards a message referencing the list in m
3. Meta-brokers send message for resourc
internal components.
4. Requests collected back from meta-bro
that both ranks resources.
5. Meta-broker mbr2 sends a message
possible accepted jobs along with the rankin
6. At last, the requested meta-broker r
according to the latency functions illustr
section. Finally the procedure moves to
(resource allocation).

B. Multiple users submission
The first case demonstrates a graph the

an inter-cloud that accepts few cloudlets (o
our case); however the number of the users
Figure 3 shows such case wherein four user
requests to personalized meta-brokers. The
interlinked in a Hamiltonian path [14] de
meta-broker visits each other only once
resource availability are exchanged amon
and meta-brokers that finally rank pe
cloudlet) and re-forward results back to requ
the same steps are followed as happens in
realistic scenario for everyday cloud clie
executing one or few VMs in a cloud sy
computational power (e.g. an Internet u
amazon VM client). Usually, such clie
customization power thus they request a g
resources.

eory diagram of
In this case, the

meta-broker mbr1
g to other meta-
multiple cloudlets
ario for business
ng multiple VMs
 a company that

y their everyday
hat usually this

ission phase.

es are exchanged

r1 to mbr1 for
e.
h cloudlets and

mrb2.
ce availability to

kers mbr1, mbr2

with the list of
ng for each job.
ranks resources,

rates in previous
o the next step

eory diagram for
one per users for
s is getting large.
rs submit service
meta-brokers are

enoting that each
e. Messages for
ng internal hosts
erformance (per
uester. Similarly,
case 1. This is a

ents that require
ystem by leasing
user that lets an
ents have fully
great diversity of

Figure 3: The multiple users requ

This section demonstrated the e
terms of handling different user d
approach offers a collective, topol
processing information solution. T
the experiment and configuratio
discussion of the usefulness of ou
simulating the aforementioned topo

VI. SIMULATION AN

This section presents the basic e
demonstrating the effectiveness of
algorithm. We integrate our soluti
which is a framework for modeli
and services. In this setting we imp
simulate scenarios of figure 2 and
networks we focus on measuring
times of the directed graph for
(number of users, brokers, and
variations. In addition, we measure
in terms of energy consumption.
variation of computational perform
of a) a graph theory model and the
cloudlets (five per user) submitt
different configurations and b) a gr
inter-cloud that accepts few cloudl
case); however the number of the us

The benchmark for comparison
traditional message exchanging
requests and get responds for eac
Thus we measure the latency that
walks. The first experimental
configuration according to topology
cases each of which contains
cloudlets requirements. These incl
five cloudlets in a meta-broker.
multiple latency values with reg
message exchanging model and
Figure 4 illustrates the weight
simulating. Specifically, we assign
for calculating the total walks (form

uest submission phase.

elasticity of the model in
demands. Moreover, the
ogy-aware and real-time

The next section presetns
on setup along with a
ur approach in terms of
logies.

ND RESULTS
experimental analysis for
the message exchanging

ion in the CloudSim [9]
ing cloud infrastructures
plement an inter-cloud to
d 3. By developing such
g the average execution

different configurations
cloudlets) and latency

e the energy competency
Next we illustrate the

mance for the simulation
performance of multiple

ted by two users with
raph theory model for an
ets (one per user for our
sers is increased to four.
n is considered to be the
model of broadcasting

ch cloudlet individually.
t represents the message

setting contains the
y of figure 2. We run two
two configurations for

lude a user that submits
For each case we test

gards to the traditional
the proposed solution.

ts J
� J�� J� that are
a value to each of these

mulas of section IV)

110

Figure 4: The topology of the directed gra

Figure 5 presents the average executi
inter-cloud for a variation of latency tim
increased by 5) where cases 1 (C1) represen
model and case 2 (C2) our solution. We
using the same cloudlet configuration.

Figure 5: The average execution time per l
of case 1 and case 2 for 2 users’ sub

It is apparent that the C2 outperforms
execution times increased considerably ev
user configurations (C1 cloudlet1 length is
cloudlet2 length is set to 4.5*104). Exec
affected significantly as the lines (C2) o
performance for both users. In the second
submit one cloudlet thus a new topolog
Figure 4 illustrates the weights J
��K�JL tha

Figure 6: The topology of the directed gra

Figure 6 presents the average executi
inter-cloud for a variation of latency tim
increased by 5) for the four user submissio
cases using the same cloudlet configuration
alter the message exchanging algorithm.

aph for case 1.

ion times of the
mes (10 to 200,
nts the traditional
e run both cases

atency variation

bmissions

C1 as the actual
ven for different
s 8*104 while C2
cution times are
offers optimized

d case four users
gy is generated.
at are simulated.

aph for case 2.

ion times of the
mes (10 to 200,
ons. We run both
n while again we

Figure 6: The average execution tim
of case 1 and case 2 for 2 users’ sub

It is apparent that in this experim
2 (C2) outperforms case 1(C1) du
the average execution times. The va
one thus the average execution tim
execution time of the cloudl
demonstrates the actual energy co
when running the first case conf
energy efficiency. It should be men
KWs are particularly low due to
simulation execution times (ms.).
demonstrates the linear trend lines f

Figure 7: The KWs consumed per
first experiment along with th

Further to that, the figure 7 sho
our solution rises while the trend
solution decreases in higher rate. T
as the energy consumption for h
reduction tendency. This is particula
inter-clouds wherein the number
brokers, datacenter) is massive, th
model we could achieve an efficien
execution times and energy con
should be noted that case 2 s
consumption measures. Formula
energy consumption function (in K
datacenter host consumed watts; the
cloudlet life-cycle, the cost per
coefficient value as an experiment
simulation results.

me per latency variation
bmission of one cloudlet.

mental configuration case
ue to the optimization of
alue of cloudlets is set to

me is equal to the actual
let. Finally, figure 7
onsumption of the hosts
figuration for exploring
ntioned that the values of

the small value of the
 In addition the figure

for each configuration.

ms. for latency times of

he linear trend lines

ows that the trend line of
d line of the traditional
This is an important gain
high latency indicates a
arly useful for large scale
of actors (users, meta-

herefore by adopting this
t optimization of average
nsumption measures. It
shows identical energy

(4) demonstrates the
KW) with regards to the
e time elapsed during the
KWH (average) and a
al property for adjusting

111

M);0NO ��J:--0� P -/4,
$888 �P ')0-Q,6NOR� P '),S��T�

Specifically, the watts are set to 300 (average value of a
high-power workstation), the cost for KW is set to 8 cents
per hour (UK bases) and the coefficient value is set to 10 to
slightly increase the values due to low workload. To
conclude, this section presented the inter-cloud message
exchanging model when compared with the traditional
solution of non-advancing message exchange decisions.

VII. CONCLUDING REMARKS AND FUTURE WORK

The simulation experiments draw the following
considerations that meet the posed requirements of the
design issues as presented in section III.
a) The diversity of message exchanging latencies shows
increased performance (execution time, energy
consumption).
b) The collective model (operating in synchronous
standards) improves the computational performance (e.g. for
the first experimental case the improvement factor is 1.4)
c) Ranking procedure is considered as first come first
served fashion, and for this case the energy consumption
levels are improved.
d) Both experimental cases show high adaptive-ness to
various workloads and topologies as well as user-orientation
service provisioning.
e) The real-time processing of information it affects
performance (due to real-time exchanging of messages)
however it offers a realistic solution (non-static).
f) The decentralization offers high dynamic-ness by
slightly affecting performance due to meta-brokering
message exchanging delays.

It should be mentioned that a complete knowledge
solution is not realistic for large scale settings, thus we
assume that one meta-broker per cloud communicates with
another meta-broker per inter-connected cloud. Thus, we
represent a complete knowledge model in terms of inter-
connectivity of sub-clouds. We further detail the design of
this model in [6], [7]. In addition, the model presented
herein could be utilized for efficient resource management
of relevant large scale systems (e.g. grids). The future work
includes the exploration of different ranking techniques for
achieving a further optimization of our approach.

In addition, we aim of implementing a message passing
interface system for queuing host processors for information
processing during run-time; thus achieving a more realistic
solution. In addition different variations of VMs (number
and configuration) could be included to demonstrate the
heterogeneity of the system. With regards to energy
consumption, measurements required to be validated in
various workloads and different topologies for identifying
supplementary optimization criteria. At last, during
simulation we have utilized simple scheduling algorithms
(for VMs and cloudlets) thus a more advanced solution
could further improve model results.

REFERENCES
[1] Gupta, R. and Vadhiyar., S. S. (2007). An efficient MPI_allgather for

grids. In Proceedings of the 16th international symposium on High
performance distributed computing (HPDC '07). ACM, New York,
NY, USA, pp.169-178.

[2] Steffenel, A. L. and Jeannot, E. (2007). Total Exchange Performance
Prediction on Grid Environments: modelling and algorithmic issues,
Towards Next Generation Grids, Springer US, pp. 131-14.

[3] Chan, E, Van de Geijn, R., Gropp, W.,and Thakur, R. (2006).
Collective Communication on Architectures that Support
Simultaneous Communication over Multiple Links. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pp. 2–11.

[4] Kielmann, T., Bal, H., Gorlatch, S., Verstoep, K., and Hofman, R.
(2001). Network Performance-aware Collective Communication for
Clustered Wide-area Systems. Parallel Computing, 27(11): pp.1431–
1456

[5] Bessis, N., Sotiriadis, S., Cristea, V., Pop, F. (2011). Towards inter-
cloud schedulers: Modelling Requirements for Enabling Meta-
Scheduling in Inter-Clouds and Inter-Enterprises, Third International
Conference on Intelligent Networking and Collaborative Systems
(INCOS 2011) , Nov 30 - Dec 2 2011, Fukuoka, Japan.

[6] Bessis, N., Sotiriadis, S., Xhafa, F., Cristea, V., Pop, F. (2012). Meta-
scheduling issues in interoperable HPCs, Grids and Clouds,
International Journal of Web and Grid Services, volume 8, no 2.

[7] Sotiriadis, S., Bessis, N. and Antonopoulos, N. (2012). Decentralized
Meta-brokers for Inter-Cloud: Modeling Brokering Coordinators for
Interoperable Resource Management, 9th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD'12), May 29-31,
Chongqing, May 29 – 31 2012, ISBN 978-1-4673-0024-7/10, p.p.:
2475-2481.

[8] Sotiriadis, S., Bessis, N., Xhafa, F., and Antonopoulos, N. (2012).
From Meta-computing to Interoperable Infrastructures: A Review of
Meta-schedulers for HPC, Grid and Cloud. In Proceedings of the
2012 IEEE 26th International Conference on Advanced Information
Networking and Applications (AINA '12). IEEE Computer Society,
Washington, DC, USA, 874-883.

[9] Calheiros, R., N., Ranjan, R., Beloglazov, A., De Rose, C., A., F., and
Buyya, R. (2011). CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper. 41, 1 (January 2011),
23-50.

[10] Tseng, C. H., Wang, S., Ko, C., and Levitt. K., (2006). DEMEM:
distributed evidence-driven message exchange intrusion detection
model for MANET. In Proceedings of the 9th international
conference on Recent Advances in Intrusion Detection (RAID'06),
Diego Zamboni and Christopher Kruegel (Eds.). Springer-Verlag,
Berlin, Heidelberg, pp. 249-271.

[11] Mpich2 home page. Available at: http://www-
unix.mcs.anl.gov/mpi/mpich2. Accessed 20/06/2012

[12] MPICH-G2. Available at: http://www3.niu.edu/mpi, Accessed
20/06/2012

[13] The message passing interface (MPI) standard, Available at
http://www.mcs.anl.gov/research/projects/mpi/, Accessed 20/06/2012

[14] Bondy, J.A.; Murty, U.S.R. (2008), Graph Theory, Springer.
[15] Sotiriadis, S., Bessis, N., and Antonopoulos, A. (2012). Advancing

inter-cloud resource discovery based on past service experiences of
transient resource clustering, The 3-rd International Conference on
Emerging Intelligent Data and Web Technologies (EIDWT-2012) {to
appear}

112

