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Abstract — Optimizing the competence of message exchanging 
algorithm in large-scale grids and inter-clouds could be proven 
to be a crucial factor in achieving an efficient resource 
management. Traditional solutions usually incorporate either 
probabilistic or flooding message exchanging techniques 
mainly due to the dynamic and unpredictable formation of the 
infrastructure. Our vision encompasses a total decentralized 
nodes topology in which message exchanging algorithm allows 
dissemination of communication messages within a decoupled 
node formation setting. We consider various e-infrastructure 
nodes that exchange simple messages with linking nodes 
regarding resource competence for executing certain service(s) 
requirements. The optimization criterion is to improve the 
energy efficiency of the network performance for message 
exchanging in two cases as follows. Firstly, a requester sends 
messages to all interconnected nodes and gets messages only 
from resources available to execute it. Secondly, the requester 
sends one message for all of the jobs of its local pool and gets a 
respond from available nodes, and then obtainable resources 
are ranked and hierarchically categorized based on the 
performance criterion e.g. latency competency. The algorithm 
is simulated and results obtained are very supportive. 

Keywords: Message exchanging, grids, inter-clouds, 
decentralized message passing, energy efficient resource 
management. 

I. INTRODUCTION 
This work is motivated by the message passing 

conceptual design and its algorithms that include a form of 
communication between different processes and objects in 
distributed and parallel computing. Our vision is inspired 
from that model and encompasses a fully decentralized 
topology of collaborated and decoupled nodes suitable for 
resource management in large scale and dynamic grids and 
inter-clouds. In such settings, we aim to explore the 
message exchanging framework among nodes as happened 
in message passing algorithms that allows communication 
among processes of parallel hosts during the actual 
processing time. This implies that processes among different 
nodes transfer data (sending and receiving messages) 
through shared memory areas. 

Various algorithms and approaches have been designed 
with the aim to optimize the efficiency of the message 
passing algorithmic models. However, most of these works 
are strongly influenced and driven by congestion parameters 
of the network topology as well as are related with a 
homogeneous and tightly coupled setting. In addition, for 
the case of grid computing, the message-exchanging 

framework is considered as a generic collective approach 
wherein all nodes could communicate with each other. 
Specifically, nodes request for resources by broadcasting 
messages to any interconnected node; then gather responses 
and move to the next resource management step (resource 
allocation etc.) [8]. In general, message passing and 
message exchanging methods are two different methods as 
the former is about exchanging messages among processes 
[10], while the latter is related to message swapping among 
computing nodes. 

Although message passing and message exchanging are 
considered as two different schemes, nonetheless both share 
the same fundamental message dissemination algorithms 
(e.g. All-to-All [2], allgather [1]). Thus, in this work we 
present an optimization algorithm with regards to the 
consumed energy efficiency. In this study, energy efficiency 
is defined as the consumed energy (KWH) and the 
computational performance of the network for executing 
detailed demands (average execution times). In advance, our 
proposed solution is based upon user specified services 
(jobs or cloudlets). Herein, the proposed solution suggests 
that by minimizing the number of messages (sent and 
received) we can achieve an optimization of the job 
execution performance. For demonstrating the effectiveness 
of the approach we utilize an inter-cloud setting [6]. In 
general, the inter-cloud approach expands the cloud 
capabilities for achieving a wider distribution, yet by 
retaining global resource utilization equilibrium among 
various resource pools [5].  

In this e-infrastructure we develop a solution for 
exploring the latency of the system due to message 
exchanging prior to the execution of services as submitted 
by their users when random topologies are taking place. The 
nodes are components of the inter-cloud such as users, 
brokers, and cloud datacentres that interchange messages 
during service life-cycle. In addition, we implement our 
algorithm to achieve a two-fold solution. Firstly, a node 
sends messages based on the All-to-All algorithm (all nodes 
send to all interconnected nodes) and responses are 
collected back only from resources available to execute it 
[2]. Secondly, a node sends a message for all of the jobs 
contained within the local pool and gets a response only 
from available nodes to execute the demand. Lastly 
available nodes are ranked and hierarchically categorized 
based on the performance criterion of latencies in service 
execution times. The rest of the paper is organized as 
follows. Section II presents the related works in the area of 
message passing and message exchanging algorithms. 
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Section III presents the conceptual design model, section IV 
the algorithms of the message exchanging setting, section V 
the scenario cases and section VI the simulation results. 
Finally, section VII concludes the study with a discussion of 
the remarks and future research steps. 

II. RELATED WORKS 
Over the years a variety of message exchanging 

algorithms have been developed in order to address issues 
depending on the actual topology of the setting. Similar 
other solutions consider the number of packets to be moved 
among processors of cluster based parallel and grid 
computing systems. In such cases the Message Passing 
Interface (MPI) [13] has been introduced by the academia as 
a standardized portable message passing system. Different 
algorithms are related with the MPI basic solutions related 
with the point-to-point communication and the collective 
communication approach. The simplest of the cases is the 
point-to-point in which the processor of a node machine 
sends a message to another. This includes a diversity of 
variations in terms of message exchanging properties. For 
instance, the synchronous case includes the sending of 
completion information while the asynchronous contains 
data regarding the time that the message left from the first 
node. In addition, asynchronous allows high dynamic-ness 
of the system. 

Others include the blocking operation that only allows 
messages to return after the completion of the process in 
contrast to the non-blocking operation that tolerates the 
return of messages straight away [10]. However, this 
solution is considered appropriate for small scale clusters 
due to the one-to-one communication pattern. A different 
approach is the collective communication that involves the 
routing of numerous processes at a time. This includes 
operations like the broadcasting (one to many 
communications). This solution increases the design 
complexity as it encompasses the synchronization of 
processes. Nevertheless, it is a more advanced approach 
which could be applicable for largeer scale distributed 
infrastructures. In general, by using broadcasting named as 
“broadcast call” one node sends a message to all nodes of 
the group. The “reduce call” procedure is called by the MPI 
at the end for collecting information from all nodes’ 
processors regarding the desired operation and stores the 
result on one node [2]. 

Various collective communication procedures include 
different routines for implementing different behaviors as 
contained in [13]. This includes the All-to-All, the allgather, 
the BCast, AllReduce and other functions. As this work is 
related with message exchanging in large scale 
infrastructures (grids and inter-clouds) we consider the 
collective pattern solution as the most appropriate mainly 
because it involves complete exchange in a one to many 
model. Initially, the All-to-All model allows complete 
information among all the node processes of a group. 
Similarly to the allgather the latter solution collects 
processes and then broadcasts (BCast) to each conducted 
node. However, as the scale of the setting increase in 
number of nodes, the efficiency of the methods performance 
is influenced significantly due to the overcrowding of 

network resources. Thus, the reduce functions can minimize 
the number of messages by decreasing data and 
broadcasting again.  

A number of theoretical models have been further 
developed in order to avoid the network congestion [1]. For 
example, the spreading simple algorithm allows a node to 
send data to node (p+i) where p is the process and i the 
iteration and, receive data from node (p-i+N) mod N where 
N is the number of processes [1]. A different approach is the 
one presented in [3], named as ring/bucket/circular 
algorithm. Specifically, at each iteration i a process p sends 
data to a node with an index (p-i+1+N) mod N to the rights 
neighbor of the list. The recursive doubling algorithm [13] 
requires less time as the number of total transfers is reduced. 
The MPI make use of the MPICH [11] to recursively reduce 
number of messages by utilizing a criterion; when the 
number of processes is a power of 2 uses recursive doubling 
for small message sizes. Next, for the rest of the messages 
(large size) it uses the ring algorithm to achieve message 
dissemination. However, this solution aim to small-scale 
cluster based parallel computing systems. Authors in [2] 
propose that the most of these algorithms have been 
designed for homogeneous and tightly coupled systems. 

In the case of high heterogeneous and de-coupled 
settings (e.g. grids and inter-clouds) solutions divide 
network into hierarchies. The MPICH-G2 [12] presents 
twofold algorithms to gather data up the hierarchy using 
recursive doubling and then broadcast these data by 
binomial broadcast (according to a probability factor). 
Similar the MagPIe presented in [4] includes a three stages 
algorithm to first allgather data at coordinators, second 
gather data among coordinators and, third broadcast data by 
coordinators using again a binomial broadcast. The major 
drawbacks of these are the fact that follows static network 
hierarchical schemes in modeling decisions [10]. In 
addition, data transmission is repeated at coordinators thus 
keeping bandwidth values in high layers of hierarchy in low 
levels [1]. 

In contrast with these approaches the work of [1] 
illustrates an algorithm that is network topology aware and 
adaptive to various network loads. This solution follows the 
transient clustering of nodes based on network 
characteristics. In a similar vein, [2] focus on an alternative 
algorithm for minimizing the number of steps through a 
wide-area network. They also claim that the reduction has a 
direct impact on the performance modeling by minimizing 
the factors that directly interfere the wide-area 
communication. Although efficient algorithms have been 
developed for specific networks, a generic model for 
heterogeneous and decoupled nodes has been proven to be 
complex to be designed. This is mainly because of the 
dynamic nature of the resources. In advance, an important 
requirement to be considered is the real-time information 
processing and the elasticity and scalability of the services 
(jobs) submitted by the users. 

III. CONCEPTUAL DESIGN OF THE MESSAGE EXCHANGING 
ALGORITHMIC MODEL (GRAPH THEORY) 

This section presents the conceptual design of the 
message exchanging algorithmic model for inter-cloud. To 

106



illustrate this setting we employ graph theory modeling for 
achieving two-fold benefits. First characterizing internal 
components into graph vertices (nodes) and secondly 
showing the interconnectivity structure among pairwise 
nodes known as edges by means of graph theory theorems. 
In view of that, let assume that an inter-cloud is a graph 
� � ��� �� which at an initial stage is an undirected graph 
with nodes 	
� 	
 � � and�	
 
 � 	
. If 	
 communicates 
with 	� there is a trail among nodes called��
. In our case 
we aim to a directed graph, thus �
 is considered as a walk 
that connects 	
�and 	��without linkage restrictions 
(communication can be repeated). Thus, the analysis of the 
inter-cloud life-cycle will allow us to identify the crucial 
components and eventually map each of which into graph 
theory nodes. In advance, we will identify the 
communication links (edges-walks of the graph). 

An inter-cloud is comprised of a set of sub-clouds that is 
constructed in a fundamental hierarchical form. This 
includes a data-center that manages physical machines 
(hosts) and generates a number of virtual machines within a 
host(s) for sandboxing user demands. Let us assume that a 
user request for certain requirements contained into a 
service level agreement (e.g. computational power) using a 
cloud interface. Then the cloud assigns a transitional 
component per user to act as intermediate in the 
communication among user and cloud. This component is 
named as meta-broker and acts on-behalf of user by 
ensuring that the cloud does not violate the established 
service level agreement.  For each of the users the cloud 
system generates a number of meta-brokers by repeating the 
same process. 

When the system extends to an inter-cloud, it is assumed 
that various clouds could establish communication and grant 
authority to meta-brokers for message exchanging through 
inter-relationships inspired by the meta-computing 
paradigm [8]. Specifically, during the meta-broker 
development the cloud provides a list of inter-collaborated 
meta-brokers that have been already initialized at a previous 
stage. We detail the modeling of this approach in [7]. Next 
we focus on the mapping of internal components to graph 
theory initiatives. The next sections present the theorems of 
the inter-cloud graph theory for mapping components 
towards the statement of the message exchanging model. 

A. Theorem 1. The directed graph formation 
 Let assume that a user �
 establishes connection with a 

cloud �
 meta-broker ��
�and sends a request message for a 
number of services �
 named as cloudlet. Then ��
 
delegates a list of inter-linked meta-brokers ������
 
forwards this request to an inter-connected meta-broker ��� 
where����� � ������
. We assume that at a previous phase 
a user �� executes a number of services in a cloud �� meta-
broker ���. In addition, each meta-broker accesses a local 
datacenter (����
�� ����� of the cloud for quoting resource 
availability. Thus, at this stage we have a directed graph G 
that represents the inter-cloud setting wherein 
�
� ��� ��
� ������ ����
�� ����� � � and��
 � ��
� ��
��� �� � ���� ����,��� � ���
� ���
��,��� � ����� ������ 
wherein of �
� ��� ��� �� � � of ���� ��. It should be 
mentioned that  �
� �� are repeated as many times as the 

number of services submitted by the users. Figure 
1demonstrates the graph theory nodes and edges by 
mapping internal inter-cloud components.  
 

Cloud
1

Cloud
2

Figure 1: The inter-cloud graph theory mapping model 

B. Theorem 2. The sub-graphs formation 
In an inter-cloud graph � � ��� �� we define a sub-graph 

�
 � ��
� �
��and a sub-graph �
 � ��
� �
��to be the sub-
clouds of inter-cloud graph. Thus,��
 � �, �
 � � and 
�� � �, �� � � wherein each edge of �
�and �� are incident 
with vertices in �
and �� respectively. Each sub-graph 
represents a sub-cloud internal graph. That includes multiple 
users (nodes) that each of which submits multiple services 
with different requirements. These are directly sent to each 
user customized meta-broker that again re-forwards a 
request for availability to interlinked meta-brokers as well 
as its internal resources (datacenter). Then, the responding 
nodes receive the requests and decide whether or not their 
datacenters could execute the job or not by generating a 
ranking property related with the competence of the 
datacenter computational power. Specifically, the ranking 
approach is presented in directed graphs by the Hamiltonian 
path approach as in [14]. In our solution we assume that 
meta-brokers collaborate in a Hamiltonian path setting with 
other meta-brokers and datacenters (each node visits 
contacted node only ones). 

C. Theorem 3. The ranking tournament 
Our model incorporate this solution by assuming that a 

graph���� �contains sub-graphs �
� ���wherein��
 � �����and 
�� � ���  are directed graphs that contain ��vertices.  For 
each vertices�	
� 	� � ���� �� there is an edge��
� ��� implied 
from a ranking tournament of responding node. In such case 
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a requesting node asks every responding node exactly once 
by sending and receiving messages, then it ranks the 
responding nodes by a ranking criterion (e.g. latency of 
responding time, availability, competence of computational 
resources, priorities, etc.). The requesting node collects 
addresses of responding nodes from an internal list. Then it 
generates paths that are bi-directed walks named as 
� �wherein � ! "�that contains � # $�edges e.g. ��
� ����� ���� ���� % �� &
� � �. A node is part of the list only and only 
if�� � �. In any other case � is a vertex that does not appear 
in�� , thus it is not a walk.  

D. The model of message exchanging 
The message exchanging solution maps the graph theory 

and Hamiltonian path (for meta-brokers) characteristics as 
follows. We assume a send request message to a meta-
broker as presented in Theorem 1. The last one forms the 
requesting node that forwards resource competence demand 
to interlinked meta-brokers that are members of sub-clouds 
as illustrated in Theorem 2. At last, according to Theorem 3, 
contacted meta-brokers rank resources according to a 
criterion and send responses back to the requesting node. 
This case represents the traditional inter-cloud 
communication pattern for message passing in which nodes 
create a transient graph according to cloud suggestions for 
collaboration. In advance, the message passing model is an 
All-to-All solution if the user submits one job, while it is 
transformed to allgather approach [1] when a user submits 
more than one request. Thus this forms the energy 
efficiency message exchanging algorithmic statement. 

A requesting node (user) sends a message that contains 
a requirement specification to a responding node (contacted 
meta-broker) that contains all the cloudlets require to be 
executed. The last one communicates with interlinked meta-
brokers by sending a message that encompasses the list of 
jobs. The contacted meta-brokers rank internal resources 
for each received job by executing a performance criterion 
function concerning the latency of components (meta-
brokers, datacenters) on replying back. Then they send a 
message that contains only the jobs that are capable of 
executing enclosed in the initial list. The requesting node 
collects acknowledgements from responders and classifies 
nodes by ranking each of which through a tournament 
operation. Finally, the meta-broker moves to the resource 
allocation step. 

  This model offers significant advantages over the 
traditional solutions presented in section 2 as incorporates 
dynamic management features as follows: 
a) It supports a diversity of variations in terms of message 
exchanging properties (e.g. performance criterion). 
b) It allows synchronous meta-brokering inter-linking due a 
user request. 
c) Collectively distributes the whole set of jobs instead of 
each separately. 
d) It gets responses only from high ranking resources per 
job requirement. 
e) It offers high adaptive-ness to various workloads as 
request resource availability during run-time. 

f) It supports message exchanging of the inter-cloud 
topology (topology awareness). 
g) It deals with user specified services, thus service-
orientation message exchanging. 
h) It executes real-time information retrieval as requests for 
availability happen during the message exchange life-cycle. 
i) It offers fully decentralization (for meta-brokers) and 
elasticity due to the variety of user defined tasks as well as 
heterogeneity by sandboxing tasks in virtual machines 

Relevant algorithm pseudo-codes are discussed next. 

IV. THE PROPOSED ALGORITHMS 
This section presents the algorithmic model of the 

message exchanging approach between components (nodes) 
of the inter-cloud. This includes a two-fold solution that 
incorporates the request and response case for users and 
meta-brokers respectively. In addition, we present the 
performance criterion for ranking resources (according to 
theorem 3) which is the latency of the brokers and 
datacenters on replying back. Thus, we focus onto the 
message exchanging procedure that exists prior to the 
resource allocation process that currently is out of the scope 
of this study. 

A. The User Message Request Algorithm 
The user requests for resources by sending a message 

with the cloudlet specification (e.g. job length, processor 
number etc.) for each of all the jobs. This takes the form of 
an array list �'()*+(,-./� 01,'2� where / is the identification 
number of the cloudlet and spec is the specification of the 
cloudlet). Algorithm I shows the procedure which accepts 
the user request as an input and waits for the meta-broker to 
function for a specific amount of time.  

Algorithm I: User Message Request 
1. function userRequest(message) 
2. input: userCloudleti 

3: for each userCloudleti � userListi 
4: create cloudleti.speci(length, mips, pesNumber) 
5:  output: mi = userCloudletList(cloudlet[i, speci]) 
6: end for 
7: send userRequest(message) to meta-broker 
8: wait for response(interval x) 
9: if interval x not violated then 
10:  collect mbrResponse 
11: start cloudlet life-cycle 
12: end if 
13: end function 
 

Specifically, the algorithm creates the cloudlet 
specification for each service. Then it generates a two-
column array list wherein the first column denotes the id of 
the cloudlet and the second the specification. Finally, the list 
is sent to the meta-broker(s) and the user waits for 
response(s) during a definite amount of time (interval x). If 
the interval is not violated it implies that the meta-broker 
responds on time and the cloudlet life-cycle starts. 
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B. The Meta-Broker Message Request-Retrieve Algorithm   
The algorithm II presents the meta-broker message 

request-retrieve pseudo-code. The meta-broker gets as input 
the user cloudlet list formed in algorithm I. Then for each 
interlinked meta-broker it sends a message by forwarding 
the list collected from the user. Also, this is sent to the 
internal datacenter and responses are collected. After a 
specific interval the responses from contacted meta-brokers 
are collected and a ranking procedure is started according to 
a specific latency criterion as given from formula (1). This 
is the degree of a vertex of the graph G which represents the 
number of edges incident to the vertex, with loops counted 
twice (request and response). We assume that at least one of 
the cloudlets could be executed (�+,3�4567� 
 8�, 
consequently the message is counted twice since one 
message is returning always back.  

9:-,;'<=>?@ � A +,3�4567���$�
=?>@���=>?

 

 This is the performance measure or the time elapsed till 
the response of the node. Specifically, the study will explore 
this property in the experimental analysis section. Finally, 
the required resource is set and the algorithm moves to the 
resource allocation mechanism. The last one is currently out 
of the scope of the study, thus we assume that this procedure 
sends the VM address to the user. A detailed discussion on 
this is illustrated in [15]. 

Algorithm II: Meta-Broker Message Request-Retrieve 
1. function mbrRequest(message) 
2. input: userCloudletList(cloudlet[i, speci]) 
3: input: mbrResponse(message) 
4: set message = userCloudletList(cloudlet[i, speci]) 
5: for each requestmbri � mbrList 
6: send mbrRequest(m) 
7: end for 
8: send mbrRequest(message) to internalDC 
9: get internalDC response 
10: start trigger for mbrResponse(message) 
11: set triggerInterval = 0 and wait for response(interval y) 
12: if triggerInterval = y then 
13: set flag = TRUE  
14: end if 
15: if interval y not violated and flag=TRUE then 
16:  run ranking(LatencyCriterion, rankTable[i, rank]) 
17: set results 
18: end if 
19: go to resource allocation mechanism 
20: output: cloudlet life-cycle 
21: send cloudlet life-cycle to user 
22: end function 

C. The Meta-Broker Message Response Algorithm   
Algorithm III illustrates the meta-broker message 

response case. Specifically, the algorithm gets as input the 
user cloudlet list for the meta-broker and requests for 
resource availability from internal datacenter. Then, for each 
cloudlet executes a ranking procedure and places results in a 
ranking table (a two column array that holds in the first 
column the id of the job and in the second column the 
ranking value). It should be noted that the ranking value is 

considered according to a) the availability of the datacenter 
to execute rthe equest, b) the latency of the datacenter in 
replying back and c) a coefficient variable for controlling 
further simulation characteristics (e.g. reservations). At last 
a response is send back to the requester only in the case of 
resource availability. 

9:-,;'<BC@ � �$" � A +,3�+'7� D��A +,3�+'7�� � '
E

7�E
�"�

BC@�F
 

Specifically formula (2) computes the latency of the 
contacted meta-broker as the sum of the responses sent 
multiplied by ½. This denotes the half loops as the 
algorithm sends messages but not all the nodes respond 
back. The nodes that reply are given by the variable�:.  Thus 
the sum of the vertices that respond are summed up and 
added to the half-walks vertices. This value is again 
multiplied with a coefficient property ' that represents 
priority jobs or advance reservation mechanisms etc.  

Algorithm III: Meta-Broker Message Response 
1. function mbrResponse(message) 
2. input: userCloudletList(meta-brokeri, cloudlet[i, speci]) 
3: send mbrRequest(message) to internalDC 
4: get internalDC response 
5: for each userCloudleti � userListi 
6: run rankingProcedure(PerformanceCriterion) 
7: create rankTable[i, rank] 
8:  output:  message = rankTable 
9: for each i� rankTable  
10:  send mbrResponse(message) 
11: end for 
12: end for 
13: end function 

Finally, the total latency from the perspective of a user is 
calculated from formula (3) which represents the sum of 
meta-broker and datacenter latency for the request / (as the 
set of cloudlets initially submitted). 

9:-,;'<GHI?@ � 9:-,;'<=>?@ D 9:-,;'<BC@   (3) 

To conclude in this section we have presented the 
algorithmic model as well as the latency functions of the 
message exchanging system according to the degree of a 
directed Hamiltonian graph. Next, we discuss the scenario 
cases for multiple user submissions. 

V. SCENARIO CASES 
This section presents the scenario cases of the inter-

cloud system for demonstrating the message exchanging 
procedure and the topology awareness and adaptive-ness of 
our approach. Specifically, we demonstrate two cases of the 
inter-cloud each of which covers two different topologies as 
follows. The first setting encompasses a small number of 
users that submit various workloads to the inter-cloud 
system. In this case few meta-brokers collaborate for 
exchanging messages. The second case includes a large 
number of users that submit one service, so the setting 
contains a complex meta-brokering topology. 
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A. Multiple cloudlet submissions 
Firstly, we demonstrate a graph the

multiple cloudlets submitted by two users. 
cloudlets are clustered in a list from the m
and a dissemination message by sending
broker (e.g. mbr2). Figure 2 illustrates the m
submission phase. This is a realistic scena
and enterprise clients that require executin
in a private company’s cloud system (e.g.
leases VMs for its employees to amplify
activities). It should be mentioned th
configuration comprises identical VMs. 
 

Figure 2: The multiple cloudlets submi
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2. Meta-broker mrb1 forms a list with
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3. Meta-brokers send message for resourc
internal components. 
4. Requests collected back from meta-bro
that both ranks resources. 
5. Meta-broker mbr2 sends a message 
possible accepted jobs along with the rankin
6. At last, the requested meta-broker r
according to the latency functions illustr
section. Finally the procedure moves to
(resource allocation). 

B. Multiple users submission 
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an inter-cloud that accepts few cloudlets (o
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interlinked in a Hamiltonian path [14] de
meta-broker visits each other only once
resource availability are exchanged amon
and meta-brokers that finally rank pe
cloudlet) and re-forward results back to requ
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computational power (e.g. an Internet u
amazon VM client). Usually, such clie
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Figure 3: The multiple users requ
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variations. In addition, we measure
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variation of computational perform
of a) a graph theory model and the 
cloudlets (five per user) submitt
different configurations and b) a gr
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Specifically, the watts are set to 300 (average value of a 
high-power workstation), the cost for KW is set to 8 cents 
per hour (UK bases) and the coefficient value is set to 10 to 
slightly increase the values due to low workload. To 
conclude, this section presented the inter-cloud message 
exchanging model when compared with the traditional 
solution of non-advancing message exchange decisions. 

VII. CONCLUDING REMARKS AND FUTURE WORK 

The simulation experiments draw the following 
considerations that meet the posed requirements of the 
design issues as presented in section III. 
a) The diversity of message exchanging latencies shows 
increased performance (execution time, energy 
consumption). 
b) The collective model (operating in synchronous 
standards) improves the computational performance (e.g. for 
the first experimental case the improvement factor is 1.4) 
c) Ranking procedure is considered as first come first 
served fashion, and for this case the energy consumption 
levels are improved. 
d) Both experimental cases show high adaptive-ness to 
various workloads and topologies as well as user-orientation 
service provisioning. 
e) The real-time processing of information it affects 
performance (due to real-time exchanging of messages) 
however it offers a realistic solution (non-static). 
f) The decentralization offers high dynamic-ness by 
slightly affecting performance due to meta-brokering 
message exchanging delays. 

It should be mentioned that a complete knowledge 
solution is not realistic for large scale settings, thus we 
assume that one meta-broker per cloud communicates with 
another meta-broker per inter-connected cloud. Thus, we 
represent a complete knowledge model in terms of inter-
connectivity of sub-clouds. We further detail the design of 
this model in [6], [7]. In addition, the model presented 
herein could be utilized for efficient resource management 
of relevant large scale systems (e.g. grids). The future work 
includes the exploration of different ranking techniques for 
achieving a further optimization of our approach. 

In addition, we aim of implementing a message passing 
interface system for queuing host processors for information 
processing during run-time; thus achieving a more realistic 
solution. In addition different variations of VMs (number 
and configuration) could be included to demonstrate the 
heterogeneity of the system. With regards to energy 
consumption, measurements required to be validated in 
various workloads and different topologies for identifying 
supplementary optimization criteria. At last, during 
simulation we have utilized simple scheduling algorithms 
(for VMs and cloudlets) thus a more advanced solution 
could further improve model results. 
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