
Cloud virtual machine scheduling:

Identifying issues in modelling the cloud virtual

machine instantiation

Stelios Sotiriadis
1
, Nik Bessis

1
, Fatos Xhafa

2
, Nick Antonopoulos

1

1
School of Computing & Maths, University of Derby, Derby, United Kingdom

2
Departament de Llenguatges i Sistemes Informàtics,

Universitat Politècnica de Catalunya, Barcelona, Spain
1
(s.sotiriadis, n.bessis, n.antonopoulos)@derby.ac.uk,

2
fatos@lsi.upc.edu

Abstract— Cloud computing provides an efficient and flexible

mean for various services to meet the diverse and escalating

needs of IT end-users. It offers novel functionalities including

the utilisation of remote services in addition to the

virtualization technology. The last one offers an efficient

method to harness the cloud power by fragmenting a cloud

physical host in small manageable virtual portions. As a norm,

the virtualized parts are generated by the cloud provider

administrator through the hypervisor based on a generic need

for various services. However, several obstacles arise from this

generalised and static approach. In this paper we study and

propose a model for instantiating dynamically virtual

machines in relation to the current jobs submission input.

Following, we simulate a virtualised cloud environment in

order to evaluate the model's dynamic-ness by measuring the

correlation and analogy of virtual machines to hosts for certain

job variations. This will allow us to measure the deviation of

the execution time of various VMs instantiations per job

length.

Keywords: Cloud, Virtualization, Virtual Machine

instantiation, Static and Dynamic Virtual Machine scheduling

I. INTRODUCTION

Over the recent years, cloud computing has been
emerged as one of the most important IT infrastructures for
delivering computational services. These are in the form of
virtualized hardware and software that delivered to the end-
users via the public internet. In the generic form the cloud
paradigm, is a marketing term which offers low charge
computational resources with cost analogous to the actual
consumption (CPU, memory, etc.) of the user. It also
includes major characteristics of the functionality of various
evolving technologies such as grid, utility and virtualisation
computing. On the one hand, starting with the grid
computing part, cloud utilizes a federation of computer
resources – analogous to distributed systems – that belong to
the same administrative domain with the purpose of
addressing the users’ requests. On the other hand, utility
computing, offers the mean for measuring computing power
and storage; and packaging resources in order to be
distributed as metered service in a lower cost.

At last, the virtualization technology refers to the creation
and orchestration of small virtual computational chunks in
the form of an abstract computing platform; thus hiding the
physical complexity and its characteristics from the end-
users. By using this technology, cloud computing could
easily manage and control the whole power by consolidating
various small virtual machines to integrate hosts with
different features. The great advantage of this technique is
that multiple physical servers could be replaced by one larger
that manage the integration of pseudo-machines for
increasing the utilization of the resources based on the
generated needs. Likewise, virtual machines (VMs) could be
easily orchestrated and relocated to a different physical host,
if desired, in a situation of high system utilization or a
disaster case. In addition, provisioning of services could be
increased as various virtual platforms (OS and software)
could be instantiated at regular intervals in the form of
heterogeneous settings.

Based on that discussion, in this paper we take the
advantage of virtualization to study the effectiveness of VM
instantiation based on static and dynamic circumstances. In
addition we propose two models for generating cloud VMs
based in those two cases. Firstly, the static case in which
virtual machines are generated according to requirements
posed by hosts and secondly the dynamic case in which
virtual machines are generated according to a recorded
variation of the number of jobs submitted in previous job
delegations within the cloud datacentre from the datacentre
end-users.

The actual solutions will be able to be applied initially to
a single cloud and at a later stage to an extended
interoperable cloud setting namely as InterCloud. In general,
the last term aims to expand the cloud capabilities in terms of
hosted services with the aim of achieving a wider
distribution of resources, yet by retaining global resource
utilization equilibrium among various resource pools [6].
Thus in this work we integrate the solution for measuring the
performance of tasks, in terms of the deviation of the average
execution time of jobs implemented in a simulation platform
(CloudSim [refs]). We further test our environment by
simulating the infrastructure in terms of the number of hosts
and processing elements (PEs) of a real grid system by

utilizing a hybrid grid workload trace of the AuverGrid
project [refs]. The target is to evaluate the stability of the
model for achieving a constant optimisation of the range of
the average execution time. By allowing virtual machines to
be auto-generated and terminated according to a coefficient
value corresponding to the bulk of tasks we will identify the
effect of various analogies of virtual machines instantiation
by hosts along with the number of jobs that enter the cloud
datacentre.

To conclude, the next section (2) presents a literature
analysis study of the theoretical issues of the virtualized
services. The rest of the paper is organised as follows, in
section 3 we discuss the virtual machine layered structure
methodology, in section 4 the cloud platform simulation
environment, in section 5 the static and the dynamic
approaches and the generated simulation results from both
solutions (section 6) along with the comparison and the
critical discussion of the produced simulated datasets. At
last, the research study completes with a discussion of the
concluding remarks and the future work directions of our
research.

II. REVIEW OF RELATED APPROACHES

As discussed in previous section, the term virtualization
refers to the deployment of virtual hosts instead of physical
ones for splitting the computational power of the underlying
infrastructure. The fundamental idea is that the actual
machine (called host machine) generates and orchestrates
various virtual machines (called guest machines). The terms
host and guests distinguish the software that is executed in
the virtual machines. In addition, the host machine contains
software for creating and controlling the virtual parts that
called hypervisor. The last one controls and allows multiple
isolated guests to run concurrently within the same host
machine.

In virtual cloud environments, the hypervisor plays a
vital role in the whole service management procedure. In
general, authors in [1] suggest that two types of hypervisors
exist, the Type 1; native or bare metal hypervisor that is
executed within the physical computer for hosting guests,
and the Type 2; hosted hypervisors that execute guests as
applications on an unmodified commodity operating system.
Examples of Type 1 are the Kernel-based Virtual Machines
(KVM) and Xen [refs], while examples of Type 2 include the
VMWare Server and Workstation, Parallels Workstations
and Oracle VM VirtualBox [refs]. In any case of Type 1 or
Type 2, developers make use of the hypervisor software for
developing and deploying their services (hardware or
software) based upon the generic needs of the customers or
the company’s leasing target, by always aiming to scalability
and flexibility of lightweight solutions.

At a first glance, the most common used hypervisors are
the Xen [3] and the KVM [4] which both are under the GNU
general public licence. Authors in [2] compare both solutions
and discuss that Xen project has been released earlier in 2003
and has been included various Linux distributions, while is
also the base hypervisor for Citrix Enterprise solution and
Amazon EC2. In contrast, KVM, is has been released in
2007 [refs]; it introduced a new way to manage virtual

machines, that has been proven to be quite efficient while at
the same time particularly lightweight as presented in [4]. All
these years various studies have compared both hypervisors
and authors in [5] suggest that in the case of comparable
performance Xen scalability properties outperforming KVM.
Nevertheless, the choice for one hypervisor or the other can
depend on performance, flexibility of use, and elasticity of
requested services as well as strategic considerations [2] of
the cloud provider.

To this extend, all these years numerous cloud
management solutions have been developed in order to
deploy manageable virtual parts of physical cloud hosts.
Though, a general appreciation of the technical issues in
cloud hypervisors is not the scope of this study itself. In
contrast, the study aims to explore the means that affect the
performance of a cloud hypervisor (either Xen or KVM)
within an InterCloud environment. In such case one of the
most important design issues for an inter-collaborative cloud
is the resource scheduling strategy with respect to its local
cloud data-centre scheduling plan. Specifically, the approach
implies that a local data-centre should participate in the on-
demand resource selection process at both local (intra-) and
global (inter-) scale as well as manage the resource selection,
demand allocation and queuing of user tasks at a local level
by considering the characteristics of the actual system
(centralized or decentralized) as well as the requirements of
the desired scenario. Thus, in this work we take the view of
virtualization by highlighting the job scheduling perspective.
For this reason we will design virtual machines based on two
requirements, firstly the generic needs (e.g. virtual machines
are generated analogous to hosts) and secondly the job input
records. The last one implies that VMs are generated at
runtime based on the appreciation of jobs for computational
resources.

Similar works in this field that aim to a dynamically
changed of development and deployment of VMs include the
VM SnowFlock technique that enables the implementation
of numerous patterns in cloning guests. Specifically, [7]
presents a study of VM forking solutions. These include the
sandboxing technique from the security viewpoint, the
enabling of parallel computation of tasks in VMs, the load
handling to instantiate new VMs on-demand based on
sudden variations of workload. Finally, the opportunistic job
utilization allows the utilizing of unused CPU cycles with
short jobs. An analogous solution to VM fork is the VM
migration [8] that aims to improve manageability,
performance and fault tolerance of systems. In this case the
incentive that justifies the VM orchestration is to balance the
system load by migrating overloaded VMs from the one
server to another. However, the VM migration will be
addressed as an additional issue in our future works. This is
because in this work we study the efficient virtual machine
orchestration based on various job submissions initially
within a single and at a later stage in a InterCloud
environment.

The last term, InterCloud, has been emphasised by the
leading vendors in cloud services area such as HP, Intel,
Yahoo, etc. [refs]. It is noticeable that their state-of-the-art
efforts have led to the establishment of a federation of

collaborated clouds with joint initiatives. In contrast to
aforementioned works, our vision of IntreCloud includes an
inter-cooperative infrastructure of inter-enterprises as
introduced in [refs]. To conclude, in this section we have
described virtualization issues for identifying current
approaches. It should be mentioned that we will base our
design in a Type 2 hypervisor as discussed in the next
section 3 in which we present layered structure for
developing and deploying virtual machines.

III. THE CLOUD VIRTUAL MACHINE LAYERED

STRUCTURE

The term virtualization in cloud computing refers on the
execution of multiple operating systems in small manageable
chunks concurrently, thus generating guests which are the
cloud virtual hosts or nodes. Although the virtualization
technology is not relatively new, the concept of an efficient
scheduling could be affected from a dynamic VM reasoning
is an emerging challenge [9]. Specifically, the last authors
suggest that scheduling research for virtualization is still in
its infancy; however underlines the various areas to explore
in this subject. In real world cloud environments,
applications are installed in VMs and their ends-users request
for utilizing specific software. For example, a cloud could
host an OS for a user; however, the cloud hypervisor is
unaware of the exactly demanded workload, thus the VM
generated in an opportunistic method of an average request.
In addition, in the case of an InterCloud environment, the
distributed hypervisors of the cloud providers usually
function with no coordination and knowledge sharing [9] and
this affects the overall scheduling procedure. To this extend
in this work we detail the scheduling issue of a single cloud
that at later stage of the research will be extended into an
InterCloud environment. Thus, the primary goal of this work
is to study the feasibility of VM instantiation when the
solution is based in static and dynamic scheduling decisions
made by the cloud hypervisor. Specifically, we study the
scheduling behaviour when user demands for executing
specific jobs arrive in a cloud datacentre.

Before discussing that, it is essential to demonstrate the
overall cloud and InterCloud layers that could affect the
overall scheduling decisions. Figure 1 demonstrates the
layered structure of a typical cloud environment.

Hypervisor

Cloud

Physical Host

Virtual
Machine

Datacentre

Cloudlet

1

M
Datacentrei

Physical Hosti-1

Virtual
Machinei-2

Cloudleti-3

Physical Hosti

Virtual
Machinei-1

Virtual
Machinei

Cloudlet 2i-2 Cloudlet 2i-1 Cloudlet 2i

...

...

...

...

1

M

1

M

1

M

FIGURE 1: THE CLOUD COMPUTING LAYERED STRUCTURE

Specifically, each cloud environment contains one or
more datacentres (DCs), thus the cardinality is one (cloud) to

many (DCs). Then each DC could contain one or more
physical machines (hosts) thus the relationship is again one
(DC) to many (hosts). Finally each host could generate one
or more VMs that are controlled by the hypervisor software
which is responsible for generating, partitioning and
instantiating VMs based on the posed requirements of the
cloud administrator. Finally, various jobs (cloudlets) could
be executed within one virtual machine thus the cardinality
in this case is many (cloudlets) to one (VM). It should be
mentioned that in this work we assume that each cloudlet
could be the smallest part of large job submitted in the
environment in the form of a parallel processing job.

In the case of management of the overall virtual machine
development, the hypervisor plays an important role as
controls the OS and the deployment of applications within
the VM. It should be mentioned that the hypervisor is located
among the physical host and the virtual machine layer of the
layered structure as illustrated in figure 1. As discussed in
section 2, there are two basic types of hypervisors, the Type
1: bare-metal and Type 2: hosted. In figure 2 we demonstrate
the Type 1 hypervisor that is located beneath the host
hardware layer [refs].

Hardware

Hypervisor

Operating System

Application Application i-2 Application i-1 Application i

Operating System i-1 Operating System i

FIGURE 2: THE TYPE 1: BARE-METAL HYPERVISOR STRUCTURE

In contrast, figure 2 demonstrates the Type 2 hypervisor
that is placed as software beneath the OS layer of the
hardware [refs].

Hardware

Operating System

Application

Application i-1

Application i Hypervisor

Operating System i

Application i

FIGURE 3: THE TYPE 2: HOSTED HYPERVISOR STRUCTURE

In general both aforementioned types of hypervisors
could be utilised by our solution, however Type 2 layered
structure is similar to the one of the experimental setting, and
thus, we will base our design in this type.

Having said that, herein, we present a study of
considering two different VM instantiation parameters
within a cloud environment (and eventually an InterCloud)
as follows:

a) In the first case we utilise a static and predefined
hypervisor decision for the number of VMs within the
system. The result for selection is based on an opportunistic
decision of the number of the VMs within the datacentres. In
addition, the VMs are generated prior to the job scheduling
phase.

b) In the second case we utilise a dynamic hypervisor
decision for the number of VMs instantiation based on the
amount of the jobs to be submitted. In this situation, the VMs
are generated in analogy with the number of the jobs and
their computational workload.

Unambiguously, on the one hand, both solutions could
address the same cloud requirements. This is to achieve a
well-organized and immaculate workload handling in
efficient amount of time. Moreover, both cases offer a high
degree of heterogeneity by either instantiating randomly
chosen VM platforms (in the static case) or required
platforms (in the dynamic case). On the other hand, some
advantages the one are implications of the other. This is clear
in the event of power management, in which the dynamic
VM instantiation case can play an important role in power
saving. However, security issues could be raised as the static
environment is repeatedly functioned and considered less
complex in structure.

To conclude in this section we have discussed the cloud
virtual machine layered structure by analysing the
functionality of each part. In the next section we define the
experimental platform, the appropriate metrics and the
simulation configuration for developing VMs in static and
dynamic job submissions. In the following sections we
integrate our model and we perform the experiments for
identifying benchmarks of each approach.

IV. THE VIRTUAL MACHINE INSTANTIATION MODEL

Herein, we present a model for instantiating VMs within
a cloud environment analogous to the AuverGrid [refs] grid
system. Specifically, at the first stage we demonstrate the
standard static method of instantiating the VMs based on the
host requirements. This is an opportunistic decision of the
self-interested motives of the hypervisor for creating VMs,
e.g. to develop a huge number of VMs for handling all
requests, however by suffering in computational power.
Another example is to deploy different kinds of VMs with
various OS for minimizing heterogeneity issues; however
this could lead to a significant number of idle machines. To
this extend, we present a model for developing VMs by the
hypervisor in Type 2 systems, by identifying dynamic and
run-time issues on the job submission phase. In the next
section we present the static model and the dynamic models
along with their pseudo-codes and their simulation results
within the CloudSim.

A. The static VM instantiation model

The static VM instantiation model assumes that the
decision of the VMs deployment is taken prior to the job
submission phase. Thus, when the jobs arrive in the resource
pool, the schedulers (either local or meta-) select the
appropriate resource (virtual or physical) for scheduling the
tasks. In our case each VM has a local scheduler that queues
and executes the jobs in a first come first serve (FCFS)
manner.
Static VM instantiation Job distribution algorithm

Require: Jobsnum, Wai : the initial jobs number of the workload archive

 Hosti: the physical host

 Reqnode: the requested node

Poolhost: the physical resource list

PoolVMs: the virtual resource list

 ResVM: the responder virtual resource (the guest)

 ResLRMS: the responder LRMS

 Resqueue: the responder queue list

Jobdesc: job description in requested processing elements,

estimation execution time

 MessagejobAllocation: the job allocation requested message

 Messageinformative: the information on job delegation message

 MessagejobDelegation: the job execution request

Messageresults: the job delegated job results come directly from

the remote centralised scheduler

 Dellist: A vector with a list of accepted delegated resources

 OpportunisticCriterioni: The opportunistic execution criterion

Require: Hypervisor(), Send message(), Get message(), Set criterion()

1: for Hosti = {i, i++, n} ∈ Poolhost do

2: Hypervisor (Poolhost, PoolVMs, OpportunisticCriterioni) accepts

Reqnode

3: for Jobsnum = {y, y++, y} ∈ Wai do
4: for all ResLRMS ∈ PoolVMs do

5: Send MessagejobAllocation(Jobdesc) to

ResLRMS, Resqueue

6: Set criterion(Criterioni)

7: Get Messageinformative

8: Dellist ← ResLRMS

9: Dellist++

10: end for

11: end for

12: for all Resmeta-scheduler ∈ Dellist do

13: Send MessagejobDelegation (Jobdesc) to ResLRMS,

Resqueue

14: Get Messageresults

15: end for

16: if Dellist = Ø then goto step 1

17: end if

18: end for

The above algorithm demonstrates the job distribution

within a static setting of a cloud hypervisor for instantiating
VMs based on an opportunistic decision for always having a
sufficient number of virtual resources.

Requester Node Pool list Responder Host Instantiated VM VM Local Queue

Request for job execution

Opportunistic Instantiation

Generation

Forward to VM

Message: Select VM guest

Job Execution FCFS

Message: Job

Message: Return (Job)

Message: Return (Job)

Hypervisor

FIGURE 4: THE SEQUENCE DIAGRAM OF THE STATIC VM INSTANTIATION

Specifically, each host of the pool list generates a number
of VMs according to the opportunistic instantiation criterion.
The newly deployed virtual resources are ready for job

execution as they already have a local queue in FCFS
fashion. When a new job arrives in the queue the request is
directly send to the physical resource, in which the
hypervisor has already instantiated the VMs. The forwarded
message for job execution goes to the guest VM node and
places the job(s) to its local queue named as Local Resource
Management System (LRMS). Finally, the executed job
returned back to the requester node through the physical
host. Figure 4 demonstrates the sequence model of the
aforementioned procedure.

B. The dynamic VM instantiation model

The dynamic instantiation allows VMs to be generated
on demand based on the current job input from the analysis
of previous job delegations. This is to say that the workload
affects directly the number of the VMs and the
computational virtual resources deployed by the hypervisor.
Basically, the requester node asks for job execution directly
from the pool list of the physical resources. Then the
hypervisor of each physical machine generates the number of
the VMs to be deployed for the specific job requirements.
The generation is happens by forking, which is a way of
generating child VMs from parents by only copying the state
of the thread within a multithreading environment. After that,
the job sends to the instantiated VM(s) in their LRMS. Then
the results are sending back to the requester node through the
responder host. In parallel the responder host gets a
notification message of job completion. This is to say that
the developed VMs will be terminated.

The following algorithm demonstrates the job
distribution within a dynamic setting of a cloud hypervisor
for instantiating VMs based on a criterion analogous to the
number of jobs and the required computational power of the
workload archive. In addition, the pseudo-code includes a
functionality of meta-scheduling for advanced and more
complex scheduling cases. Specifically, each resource has a
meta-scheduler that is responsible for coordinating the local
queue (LRMS). Thus, a new layer has been added to
delegate messages from the LRMS of the VM to the
responder host.

Dynamic VM instantiation Job distribution algorithm

Require: Jobsnum, Wai : the initial jobs number of the workload archive

 Jobscounter: a variable to store the count of the jobs

Jobscharacteristics: a variable to store the characteristics of the

jobs

JobPEs: a variable to store the PEs of the job workload

archive

coefficienti: a coefficient variable with regards to the jobs

total number

VMnum: the number of VMs

VMcharacteristics: the computational characteristics of VMs

 Hosti: the physical host

 Reqnode: the requested node

Poolhost: the physical resource list

PoolVMs: the virtual resource list

 ResVM: the responder virtual resource (the guest)

 ResLRMS: the responder LRMS

 Resqueue: the responder queue list

Jobdesc: job description in requested processing elements,

estimation execution time

 MessagejobAllocation: the job allocation requested message

 Messageinformative: the information on job delegation message

 MessagejobDelegation: the job execution request

Messageresults: the job delegated job results come directly from

the remote centralised scheduler

 Dellist: A vector with a list of accepted delegated resources

Require: Hypervisor(), Terminate(), Send message(), Get message(),

Set criterion()

1: for Jobsnum = {y, y++, y} ∈ Wai do

2: Jobscounter Jobsnum

3: VMnum  Jobscounter  coefficienti

4: VMcharacteristics  JobPEs  coefficienti
5: for Hosti = {i, i++, n} ∈ Poolhost do

6: Hypervisor (Poolhost, PoolVMs, VMnum, VMcharacteristics) accepts

Reqnode

7: for all ResLRMS ∈ PoolVMs do

8: Send MessagejobAllocation(Jobdesc) to

ResLRMS, Resqueue

9: Set criterion(Criterioni)

10: Get Messageinformative

11: Dellist ← ResLRMS

12: Dellist++

13: Terminate(PoolVMs);

14: end for

15: end for

16: for all Resmeta-scheduler ∈ Dellist do

17: Send MessagejobDelegation (Jobdesc) to ResLRMS,

Resqueue

18: Get Messageresults

19: end for

20: if Dellist = Ø then goto step 1

21: end if

22: end for

The following figure 5 illustrates the procedure of the
dynamic instantiation of VMs by incorporating the VM
queue. Here, it should be mentioned that the VM queue first
implements the meta-scheduling behaviour to coordinate the
LRMS.

Requester Node Pool list Responder Host Instantiated VM VM Queue

Request for job execution

Dynamic Instantiation

Generation

Message: Job

Job Execution (FCFS)

Message: Job

Message: Return (Job)

Message: Return (Job)

Hypervisor: Deployment

Hypervisor: Termination

Message: Notification of completion

Return to idle status

End of procedure

FIGURE 5: THE SEQUENCE DIAGRAM OF THE DYNAMIC VM INSTANTIATION

To conclude, in this section we have modelled the VM
instantiation procedure in the cases of a) the static
environment – that meant to be not affected from the job
input file, and b) the dynamic VM instantiation that contains
the on-demand creation and termination of VMs –that meant

to be function in parallel with the number and the
characteristics of the job workload input file. Accordingly,
the next section presents the simulation experiment and the
metrics to be used as benchmarks for each of the two
circumstances.

V. THE SIMULATION CONFIGURATION

In our experiment we utilize a simulation-based tool for
designing the actual cloud infrastructure as an alternative to a
real testbed system. Specifically, the whole experiment is
configured to be run in CloudSim (version 2.1) as a way to
investigate our hypothesis without being concerned of the
lower level of technical details. By using this simulation
setting we develop a cloud that consists of various
datacentres and VMs that execute numerous cloudlets. So,
our solution is based on developing a VM orchestration
policy identical to a real-world hypervisor.

The policy integrates the static and dynamic
circumstances of VMs instantiation when simulating a real
grid workload traces. Specifically, we develop a hybrid
workload trace configuration identical to the grid workload
achieve (GWA) of the AuverGrid project. The last one is a
grid platform that consists of five remote clusters that are
composed from physical machines with dual 3GHz Pentium-
IV Xeon running Linux OS. In our experimental platform
environment we simulate one cloud identical to the
AuverGrid project that contains five datacentres with the
same host characteristics. Table 1 demonstrates the
AuverGrid list of resources.

Table 1: The AuverGrid cluster configuration (include PEs as the number

of CPUs and machines)

Resource ID Cluster

Name

CPU

Number

Rating Machines

14 clrlcgce032 186 1 93

6 clrlcgce010 112 1 56

10 clrlcgce021 84 1 42
22 obc4 56 1 28

18 iut153 38 1 19

Total available MIPs 476

Then we run various experiments by generating a hybrid

workload trace of the same amount of jobs (6000) with the
same characteristics from the GWA file of the AuverGrid
project. For comparing various simulation experiments we
use as a metric the average deviation of the finish execution
time.

VI. SIMULATION & COMPARISON

In this section we present the experimental analysis of a
single cloud for certain job and VMs variations in the case of
a static and dynamically instantiation setting.

A. Static VM Instantiation configuration

 Specifically the experiment specification which has been
implemented in CloudSim contains 5 hosts identical to the
AuverGrid configuration. Then, we explore the behaviour of
a hybrid job input file (identical to the 10% of the AuverGrid

workload  600) when enters the cloud datacentre and
instantiates a number of VMs. Specifically, we test the

environment when each host instantiates 1, 2, 4, 6, 8 and 10
VM(s). In table 2 we illustrate the aforementioned
specification.

Table 2: The cloud datacentre specification

Host

Number

Vm

Number

Cloudlet

Workload

Percentage

DCs

Number

Average Deviation

of execution time

1 1 10% 1 4808
1 2 10% 1 2408

1 4 10% 1 302

1 6 10% 1 202
1 8 10% 1 152

1 10 10% 1 122

The metric used for this experiment is the deviation of

the average execution time as given from the formulae 1.

In table 3 we present the VM cloud specification,
including the hybrid job inputs along with the datacentre
parameters and the scheduling policy.

 ∑

 (1)

Table 3: The VM and Datacentre experiment parameters

VM parameters Datacenter parameters
Size: 10000 (image size in MB)
Ram: 512 (vm memory)

Mips: 250 mips (millions of instructions

per second)
Bw: 1000

PesNumber: 1 (number of CPUs)

Policy: FCFS provision
Mips: 476

Machine: 1 Dual Core

Ram: 2048
Storage: 1000000

Bw: 10000

 Figure 6 contains a graph to demonstrate the average

deviation of execution time for the same job submission and
various VMs instantiations. It should be mentioned that VMs
are generated prior to the job submission.

FIGURE 6: THE AVERAGE DEVIATION OF EXECUTION TIME PER VMS

It is apparent from the graph that if the number of VMs
increased the average execution time is decreased
significantly. Thus, in this case of the specific job input (with
the precise cloudlet length) the more VMs are instantiated
from the hypervisor the better overall performance gained.
However, due to the experiment specification the highest
number of concurrent VMs to be auto generated at the
primary stage is a fixed number (tested to 10) because if the
number gest bigger the cloud failed to execute cloudlets as
there is no enough physical resources for the jobs.

For testing the behaviour of the same environment in
heaviest job submissions we have developed a function to
control the coefficient values of each characteristic that
affects the overall job weight. In formulae 2 the cl denotes
the current cloudlet, the l denotes the cloudlet length, the fs is
the filesize, the of is the output file and the pes is the
processing elements required from the job.

 (2)

In table 4 we present the VM instantiation within the

same cloud of table 2 for assessing the behaviour of the
specification when the coefficient value of the cloudlet
length changed to four times and eight times bigger
respectively. This is to demonstrate the average execution
time when heaviest jobs (initial length grew by 4 and 8
times) arrive in the queue.

Table 4: The cloud datacentre specification

VMs

Average

Deviation of

execution time

Cl= 1

Average

Deviation of

execution time

Cl = 4

Average

Deviation of

execution time

Cl = 8

1 4808 19712.8 38944.8

2 2408 9872.8 19504.8

4 302 1238.2 2446.2
6 202 828.2 1636.2

8 152 623.2 1231.2

10 122 500.2 988.2

Similarly, figure 7 illustrates the deviation of the

execution time for various coefficient values of the cloudlet
length.

FIGURE 7: THE AVERAGE DEVIATION OF EXECUTION TIME PER VMS

However, as the number of VMs that are instantiated

from the hypervisor gets bigger the amount of idle VMs
increased significantly as well. In that case the computational
power is spreader in low performance VMs that execute jobs
slower, thus penalised the overall cloud performance. Figure
8 demonstrates the aforementioned situation.

As a conclusion, an important challenge is to identify the
analogy of the variation of the VMs instantiation for various
job submissions including low and heavy workloads. To this
extend, the next section presents the empirical study of the
dynamic instantiation of VMs in correlation with the cloudlet

lengths with respect to the overall delay of the hypervisor for
deploying VMs on demand.

FIGURE 8: THE COMPARISON OF THE NUMBER OF JOBS, VMS, IDLE VMS

AND AVERAGE EXECUTION TIME

B. Dynamic VM Instantiation configuration

The dynamic instantiation case offers a major advantage;
the ability to actively deploy a number of VMs after
considering previous job submissions with regards to the
current input, for improving the overall performance of the
scheduling. However, in reality the instantiation of newly
installed VMs is a slow operation, which typically takes
“minutes” (measured by Amazon elastic services 2 –EC2
[refs]) and presented by [7]. The result is that the runtime
overhead is getting significant high when creating new VMs
on the fly upon request. Thus, for reducing that time we
suggest that in such situations developers could utilize a
more complex technique used in Unix-like systems named as
“process fork” [refs]. This is to say that new VMs are cloned
from old ones that exist within a pool of standard deployed
machines, rather than build VMs by scratch. Specifically, the
actual procedure is executed in a multithreading environment
in which threads are created based on the current demands.

In this section we present a dynamic configuration of the
VMs instantiation by assuming that the hypervisor takes that
decision during the cloud run-time. In practice, we measure
the delay time by implementing an event within the cloud
broker of the CloudSim simulator that decides when new
VMs are required. The monitoring of the whole environment
is currently happened empirically by observating task
executions and documented the overall performance of the
simulation. In this way, new VMs are instantiated within the
broker class and a request to the cloud datacentre (and its
hypervisor) sent in the form of periodically generic events.

Based on that, herein we suggest the configuration
parameters that directly impact the quality (in terms of
computational power) and the quantity of the VM
instantiation. In detail, the simulation parameters are the
following:

a) The number of cloudlets (jobs).

b) The length (size) of each cloudlet in terms of the

image size in MB as allocated within a cloud VM.

c) The cloudlet function (2) that contains the relation

of cloudlet characteristics (e.g. the filesize, outputsize, and

Pes number) with regards to the coefficient values of each

one.

Taking the above parameters into account we have
designed a component for supporting the decision of the
number of VMs to be generated (by forking) when certain
job variations happens. Figure 9 demonstrates the
comparison of the number of Jobs, VMs, idle VMs and the
deviation of the average execution time when the job input
affects the VMs instantiation decision.

FIGURE 9: THE COMPARISON OF THE NUMBER OF JOBS, VMS, IDLE VMS

AND AVERAGE EXECUTION TIME

In the setting of figure 9, we integrate our solution by
incorporating a function that is analogous to the parameters
as discussed in a, b, and c of the previous list. Specifically,
this analogy is given by the formulae (3) where denotes the
operator.

 (3)

Finally, when compare figure 8 and figure 9 we conclude
that the number of idle VMs and the overall execution time
have been optimised better when we control the VMs
instantiation process.

VII. CONCLUSION AND FUTURE WORK

To conclude in this paper we have highlighted the need
for controlling the VMs instantiation and the significant
incentives gained, in terms of the optimization of the average
execution time, when this model is adapted. By initially
presenting a literature study of the theoretical issues of the
virtualized services we have discussed the virtual machine
layered structure and the static and the dynamic approaches.
Finally through an experimental analysis we have presented
the cloudlet-oriented configuration parameters that affect
directly the VM instantiation decision of the hypervisor
component. The next research step includes the identification
of similar ways to improve the VM dynamic instantiation
such as VM migration and the integration the solution within
the simulation setting. This includes the realisation of the
hypervisor component within the infrastructure along with
the brokering implementation to monitor simulation times
more efficiently.

VIII. ACKNOWLEDGEMENT

The authors would like to thank the AuverGrid project
team for the source of the workload archive.

IX. REFERENCES

[1] Li, P., and Toderick, L. W. 2010. Cloud in cloud: approaches and
implementations. In Proceedings of the 2010 ACM conference on
Information technology education (SIGITE '10). ACM, New York,
NY, USA, pp. 105-110

[2] Cerbelaud, D., Garg, S., and Huylebroeck, J. 2009. Opening the
clouds: qualitative overview of the state-of-the-art open source VM-
based cloud management platforms. In Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware
(Middleware '09). Springer-Verlag New York, Inc., New York, NY,
USA, , Article 22 , 8 pages

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., and Warfield, A.. 2003. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 164–177, New
York, NY, USA

[4] Habib., I. 2008. Virtualization with kvm. Linux J., 2008(166):8

[5] Matthews, J. N., Deshane, T., Shepherd, Z., Ben-Yehudah, M., Shah,
A., and Rao. B., Quantitative comparison of xen and kvm. In Xen
Summit, June

[6] Sotiriadis, S., Bessis, N., and Antonopoulos, N., Towards inter-cloud
schedulers: A survey of meta-scheduling approaches, Sixth
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, Barcelona, Spain, Oct 26-28 2011

[7] Lagar-Cavilla, H. A., Whitney, J. A., Scannell, A. M., Patchin, P.,
Rumble, M. S., De Lara, E., Brudno, M., and Satyanarayanan, M.
2009. SnowFlock: rapid virtual machine cloning for cloud computing.
In Proceedings of the 4th ACM European conference on Computer
systems (EuroSys '09). ACM, New York, NY, USA, 1-12.

[8] Liu, H., Xu, C-Z., Jin, H., Gong, J., and Liao., X. 2011. Performance
and energy modeling for live migration of virtual machines. In
Proceedings of the 20th international symposium on High
performance distributed computing (HPDC '11). ACM, New York,
NY, USA, 171-182.

[9] Frachtenberg, E., Schwiegelshohn, U. 2007. Job Scheduling
Strategies for Parallel Processing, 12th International Workshop,
JSSPP 2006, Saint-Malo, France, June 26, 2006, Revised Selected
Papers Springer

[10] Buyya, R., Ranjan, R., and Calheiros, R. N. 2010. InterCloud: Utility-
Oriented Federation of Cloud Computing Environments for Scaling
of Application Services, Algorithms and Architectures for Parallel
Processing (2010), Volume: 6081/2010, Issue: LNCS 6081,
Publisher: Springer, Pages: 13-31

[11] Kessler, C. 2004. A practical access to the theory of parallel
algorithms. SIGCSE Bull. 36, 1 (March 2004), 397-401.

[12] Bessis, N., Sotiriadis, S., Cristea, V., Pop, F., Towards inter-cloud
schedulers: Modelling Requirements for Enabling Meta-Scheduling
in Inter-Clouds and Inter-Enterprises, Third International Conference
on Intelligent Networking and Collaborative Systems (INCOS 2011) ,
Nov 30 - Dec 2 2011, Fukuoka, Japan.

[13] Bessis, N., Sotiriadis, S., Cristea, V., and Pop, F., Towards inter-
cloud schedulers: Modelling Requirements for Enabling Meta-
Scheduling in Inter-Clouds and Inter-Enterprises, Third International
Conference on Intelligent Networking and Collaborative Systems
(INCOS 2011), Nov 30 - Dec 2 2011, Fukuoka, Japan .

[14] Xhafa, F., and Abraham, A., Computational models and heuristic
methods for Grid scheduling problems, Future Generation Computer
Systems, Volume 26, Issue 4, April 2010, Pages 608-621, ISSN
0167-739X

[15] The AuverGrid team, http://www.auvergrid.fr/, Accessed in
16/11/2011

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schwiegelshohn:Uwe.html
http://www.informatik.uni-trier.de/~ley/db/conf/jsspp/jsspp2006.html

