
  

   

Abstract—The emergency of cloud computing and Generic 
Enablers (GEs) as the building blocks of Future Internet (FI) 
applications highlights new requirements in the area of cloud 
services. Though, due to the current restrictions of various 
certification standards related with privacy and safety of health 
related data, the utilization of cloud computing in such area has 
been in many instances unlawful. Here, we focus on 
demonstrating a “software to data” provisioning solution to 
propose a mapping of FI application use case requirements to 
software specifications (using GEs). The aim is to establish a 
provider to consumer cloud setting wherein no sensitive data 
will be exchanged but it will reside at the back-end site. We 
propose a prototype architecture that covers the cloud 
management layer and the operational features that manage 
data and Internet of Things devices. To show a real life 
scenario, we present the use case of the diabetes care and a FI 
application that includes various GEs. 

I. INTRODUCTION 
N recent years we have been witnessing the fostering of  
cloud computing as a paradigm to offer virtualized 

resources to everyday users based on a pay on demand 
service provisioning model. The collection of services 
includes managing hardware, software, platforms as well as 
utilization of Internet of Things (IoT) devices for data 
collection from sensors. In many instances this has been 

 
Manuscript received July 31, 2013. The authors are members of the 

Future Internet – Social Technological Alignment Research (FI-STAR 
project, which is part of the Future Internet Private Public Partnership 
Programme (FI-PPP). 

S. Sotiriadis is a research collaborator of the Technical University of 
Crete (TUC) and member of the Intelligence Lab, Chania, Crete, Greece 
(phone: 00306944271599; e-mail: s.sotiriadis@intelligence.tuc.gr).  

E. G.M. Petrakis is a Professor of the Technical University of Crete 
(TUC) and director of the Intelligence Lab, Chania, Crete, Greece (e-mail: 
petrakis@intelligence.tuc.gr).  

S. Covaci is senior solutions architect for future Internet services 
platforms at the computer sciences and electrical engineering faculty of 
Technical University of Berlin, Institute for Telecommunication Systems.  
(email: stefan.covaci@tu-berlin.de)  

P. Zampognaro is a senior researcher at R&D Lab of Engineering 
Ingegneria Informatica S.p.A., Rome, Italy (e-
mail:paolo.zampognaro@eng.it) 

E. Georga is a researcher of the Department of Materials Science and 
Engineering, University of Ioannina, Ioannina, Greece (email: 
egeorga@cs.uoi.gr) 

C. Tuemmler is a Physician and Professor of E-Health at the Institute for 
Informatics and Digital Innovation at Edinburgh Napier University. He is 
also a collaborator in the MUNICH platform project, based at Klinikum 
rechts der Isar, Technical University Munich, Germany. (email: 
c.thuemmler@napier.ac.uk) 

 

proven to be a novel approach with regards to minimization 
of operational costs while it increases elasticity; yet not in 
the healthcare domain. Due to standards, regulations and 
recommendations such as national legislation, ISO standards 
such as ISO 80001 and the need to comply with security 
standards such as ISO 27000 there are severe restrictions to 
data transfer, storage, aggregation and analysis [4]. In 
contrast, cloud computing is typically presumed to be based 
on remote invocations and most fundamentally assumes that 
data management happens in distant datacenters; This has 
become a hurdle to the dissemination of cloud solutions in 
health care. In fact a large scale commercial solution for the 
health care industry based on public cloud technology 
provided by Google had to be abandoned in 2012 [10] 

To overcome the existing governance issues, the Future 
Internet Social and Technological Alignment Research (FI-
STAR) project is attempting to identify suitable software to 
data solutions based on Generic Enabler technology, to 
establish early trials in the health domain and prepare the 
role out of the technology into FI-PPP phase III. 
Specifically, based on [1] we aim to create a framework that 
allows GEs to be delivered to different physical locations. 
Provider cloud services will manage and upgrade the 
Generic Enablers on request from the consumer.. Generic 
Enablers (GEs) are considered as software modules that 
offer various functionalities along with protocols and 
interfaces for operation and communication. These include 
the cloud management for supervision of the underlying 
infrastructure, the utilization of various IoT devices for data 
collection and the provision of APIs (e.g. tools for data 
analytics) and communication interfaces (e.g. gateways, 
messaging etc.). It should be mentioned that GEs are 
provided by FI-WARE [8] and are stored in a public 
catalogue [5], thus developers could easily browse and select 
appropriate APIs to use. 

In this work we focus on the analysis of current GEs 
provided by FI-WARE [2] in order to demonstrate a 
fundamental prototype architecture that overcomes the 
problem of medical data transferring in remote clouds. We 
established our solution on a twofold conception. Firstly the 
cloud provider (FI-WARE XI-FI nodes that offer the actual 
infrastructure and tools) offers required functionalities, and 
secondly, the private cloud consumer that instantiates GEs to 
develop FI applications (organized in back-end and front-
end sites). To demonstrate such a setting we propose a) a use 

An architecture for designing Future Internet (FI) applications in 
sensitive domains: Expressing the Software to data paradigm by 

utilizing hybrid cloud technology 
Stelios Sotiriadis, Euripides G.M. Petrakis, Stefan Covaci, Paolo Zampognaro, Eleni Georga, 

Christoph Thuemmler 

I 



  

case analysis based on FI applications of the diabetes care, 
b) a porting approach based on graphical illustration of the 
use cases using Unified Modeling Language (UML) 
standards and c) a prototype architecture that correlates use 
case functionalities to the supported operations of current 
GEs. Section 2 presents the motivation of the study. The rest 
of the paper is organized as follows: Section 3 demonstrates 
the use case scenario and the presentation of the diabetes 
care applications and Section 4 focuses on the representation 
of the scenario to graphical illustrations using UML 
diagrams. Then in Section 5 we develop our architecture by 
mapping GEs to requirements. Finally we conclude in 
Section 6 with the future research directions. 

II. MOTIVATION 
The software to data cloud model has been described as 

an emerging approach to be explored as indicated in 2010 
EC cloud report [1]. This is considered as part of the inter-
cloud paradigm that comes to expand cloud capacity and to 
allow cloud providers to exchange services [5]. Since health 
care APIs have been characterized as one of the very 
resistant areas to be hosted on public clouds the reverse 
service approach highlights new requirements due to the 
shift to new, more suitable approaches such as Open Flo-
Enabled Hybrid Cloud strategies [11]. 

 In FI-STAR, we are motivated by the openings arising 
the possibilities of applying hybrid cloud strategies in the 
health domain. This approach will enable the adaptation of 
new standards and will offer new opportunities for cloud 
providers, web entrepreneurs and Small-Medium Enterprises 
(SMEs) to commercialize their products and services. On the 
other hand health care providers will be able to improve 
their effectiveness and efficiency by developing purpose 
build instantiations, which will be based on reusable 
modular architectures (Generic Enablers) . The reverse cloud 
approach will offer the required framework (Public Cloud) 
to allow Generic Enablers to be initiated at clients’ sites and 
to be hosted in a Private Cloud [4]. Due to the socio-
economic relevance of health care in economies globally the 
real world exploration of such scenarios become meaningful. 
Therefore FI-WARE has an important role as the provider of 
GEs and driver of the continuous development of further 
GEs to extend the GE Catalogue. [6]. By this way, we take 
advantage of cloud benefits while, at the same time, we 
minimize its main drawbacks related with security, safety 
and resilient management.  

In detail, the FI-STAR software to data cloud model 
consists of a Provider Edge that offers certified GEs, the 
Consumer Edge that instantiates GEs from provider site and 
the application store for billing and accounting reasons [4]. 
This will guarantee that no personal data will be transferred 
to a public cloud. Based on this discussion, we present use 
case requirements analysis for developing specification for 
FI diabetes care applications. The analysis underlines the 
important features that will lead to the proposition of a 
software engineering methodology based on UML. 

III. THE DIABETES CARE USE CASE SCENARIO 
The scenario demonstrates an application for supporting 

patients in daily diabetes care by utilizing a mobile smart 
device, a sensor(s) and an API that allows connectivity with 
a private cloud. The back-end should offer a cloud 
management layer for dynamic, real-time data collection and 
analysis in order to store data and produce user notifications. 
The generic concept encompasses a private cloud and a set 
of GEs that integrate operations such as automatic 
measurements and monitoring of essential information (e.g. 
blood glucose, physical activities) from sensor(s) and other. 
The use case highlights a set of activities.  

The user could download and install an application in a 
mobile smart device that manually or automatically collects 
data (from a GUI or a sensor). Then, the user performs 
authentication using dedicated credentials in order to be 
recognized by the system that represents the business logic 
implemented in the private cloud (consumer edge). In 
particular, the private cloud offers the infrastructure to host 
FI applications (GEs) within the premises of the consumer 
site (e.g. a hospital). The consumer cloud that communicates 
with a public cloud for getting software modules executes 
the resource management. The data storage and analysis 
occurs in the back-end that gives control over sensitive data 
and ensures security. 

The user could perform data recording for a variety of 
cases such as a) monitoring glucose data in continually (e.g. 
every 1 or 5 minutes) fashion from a sensor(s), b) recording 
blood glucose at random times (based on manually 
readings), c) recording medication (e.g. type 1 regarding 
injections or type 2 that refers to pills), d) recording meals 
and e) recording physical activities. Each case could have 
multiple characteristics that represent the actual dataset (e.g. 
type 1 diabetes could have type of insulin –characters, units-
numbers, injection site-characters etc.).  

Based on these, the private cloud could analyze data and 
produce alerts in real time by evaluating data. Further the 
patient could be able to review information and define 
achievement goals. From the perspective of the personnel, 
there should be an authentication mechanism to allow access 
to a platform that includes the dedicated patients, their data 
and available APIs for analysis (legacy tools). Personnel 
could be able to perform data analytics (e.g. using specific 
GEs or APIs) for assessment and recommendation. 

To define such a setting, we describe software quality 
characteristics based on the ISO 25010 [9]. Briefly, these 
include functional suitability for complete, correct and 
appropriate functionalities as well as performance efficiency 
that is very crucial. In detail, such characteristics should 
include the time management (e.g. sampling period of the 
used sensors), alerts (via notifications) and resource 
utilization (e.g. data storage, required bandwidth, CPU and 
RAM). Another important factor is compatibility with 
different sensors and software, and interoperability. Next 
section introduces the use case analysis and the mapping of 
GEs to use case requirements based on UML standards. 



  

IV. MAPPING USE CASES TO GES USING UML 
This section details the representation of the use cases 

using UML standards. Briefly, UML allows the 
identification and graphical representation of functional 
requirements. We start by modeling a UML use case 
diagram of actors and various cases (e.g. install application, 
data recording etc.). This could give us a general view of the 
whole system. The back-end cloud is considered as the 
environment to host applications and tools for patients and 
personnel. The sensor is a specialized part of the patient that 
generates data stored in a private cloud. 

A. Definition of diabetes care system using UML 
This section demonstrates the transformation of the 

diabetes care use case scenarios to UML diagrams. We start 
by showing the possible actors (patients, sensors, cloud and 
personnel) and the relationships with use cases (e.g. a patient 
installs applications, performs authentication and generates 
data that are stored in the back-end cloud and are accessible 
by the clinicians – named as personnel). Fig. 1 shows the 
UML use case. 

 
Fig. 1.  The UML use case diagram of the diabetes care application. 

 
Based on Fig. 1, we have produced three UML activity 

diagrams to show flow of communication that will assist in 
the design of a high level architecture. The aim is to 
demonstrate every aspect in terms of interactions and then 
analyze their features as software modules and identify 
offered GEs. 

 
Fig. 2.  The UML activity diagram of the patient activities/actions 

 

Fig. 2 demonstrates the patient activity diagram and the 
workflow of actions. As described in Section 3, the user 
downloads the application, performs authentication and then 
accesses the offered services (e.g. record data manually or 
using a sensor). The monitoring started when essential data 
have been recorded (e.g. blood glucose levels). In case of a 
situation, an alert is triggered and patients and/or personnel 
are informed by getting a notification. The actual situation is 
triggered from an event or a set of events. Personnel also 
provide advices and produce notifications. 

Fig. 3 demonstrates the activity diagram of the personnel. 
For example each clinician is an authorized user that 
accesses the data of the private cloud. The hypothesis is that 
data needs to be stored in the back-end site for safety and 
privacy. First, they perform authentication (system assigned 
credentials). By retrieving and evaluating data they can 
examine notifications, produce recommendations and 
perform data analytics using private cloud dedicated APIs. 
Also, they access data mining and data integration tools (e.g. 
GEs or legacy system APIs). 

 
Fig. 3.  The UML activity diagram of the personnel activities and actions 

 
Next we focus on the analysis of the high level 

architecture by porting UML diagrams to software elements. 

B. Porting UML diagrams to high level architecture 
software elements of the diabetes care system 

We define a high level architecture that encompasses a set 
of software configurations required to reason about the 
system. We present our solution in a modular structure of 
various elements. These are the various software modules, 
their associations and the properties and operations of both 
properties and interactions. The aim is to present a strategy 
to port use case requirements to the diabetes healthcare 
system shown in Fig 4. The details are presented below. 
• The "record data automatically” module includes a) an 

interface to detect the sensor and ensure 
communication, b) an interface to input the data stream 
from the sensor (these could be in from Bluetooth, Wi-
Fi, and/or 3G networks), c) an interface to configure 
device with essential parameters (e.g. diabetes type and 
a measurement) and d) an interface to subscribe data 
based on required parameters (to identify contextual 
information). 



  

Patient! Device!

GUI for data 
input!

notifications!

record data 
automatically!

sensor!

- Bluetooth!
- Wi-Fi!
- 3G support!

-  Blood glucose   !
-  Medication!
-  Physical activities!
-  Meals recording!

smart app front-end!

inter-
operation!

back-end!

management! data integration!

repository!

interoperability!

GUI!

Personnel!

legacy tools!secure 
management!

 

Fig. 4.  The high level architecture of the diabetes care use case scenario 

 
• The “GUI for data input” module comprises interfaces 

for manual data input. This will have a) an interface for 
data collection from the GUI (e.g. recording of meals 
or physical activities), b) an interface for sending 
configuration request for specific parameters to the 
system (e.g. to store context) and c) a subscription 
interface to receive data for selected parameters. 

• The “interoperation” module includes interfaces for 
query management. These are a) interfaces for 
retrieving context data in a request/response or in a 
subscription mode from either applications of patients 
(e.g. from the sensor control API), and b) an interface 
for querying data and/or registering data to the system. 

• The “notification” module includes an interface for 
collecting data according to the output modes of the 
interoperation module. This will produce static (e.g. 
general recommendations for meals and activities) or 
dynamic warning (e.g. notifications on real-time based 
on events or situations generated from a set of events) 
available to users through a GUI. 

• The “management” is the entry point of the system for 
accessing information from the interoperation module. 
This will include a) an interface for querying properties 
of things (patient sensor), b) an interface for 
forwarding updates with regards to properties (to other 
modules), c) an interface to input data about IoT 
resources (patient sensor as a resource), d) an interface 
to input sensor data and their properties, e) an interface 
to input relationships of how sensor and modules are 
linked and how properties (e.g. blood glucose levels) 
are delivered. 

• The “repository” is a module for registering the context 
information of provider applications. It includes a) an 
interface for input a query for the location of where 
context is available and b) an interface for discovery of 
contextual information. 

• The “data integration” is the module that offers the 
properties of the various actors of the system. This 
includes a) an interface for patients properties input, b) 

an interface for information input for the repository 
(contextualized properties such as the blood glucose 
level for a specific patient) and c) an interface for 
device properties (to monitor properties from sensors). 

• The “interoperability” defines a module that offers 
mediation in communication. In particular, we made 
the assumption that there is an interoperability 
mechanism (offered by an API) to allow association of 
different communication protocols and different data 
models. This will include a) an interface to provide a 
virtual proxy for input data from administration GUIs 
(e.g. the user interface for input data manually) either 
from patient or personnel and b) an interface to provide 
ontological description of services in order to assist on 
the translation of services. It enables transmission of 
the meaning of services to assist on the discovery and 
data management between different modules. 

• The “secure management” refers to an interface that 
allows secure communication among the back-end, the 
smart application and the personnel GUI. The interface 
is related with point-to-point authentication strategy 
between the patient application and the private cloud in 
addition to the back-end private cloud firewall. It will 
have an input for login authorization from the patient 
and will output an access token. 

• The “GUI” module of personnel includes interfaces for 
secure access and control of sensitive data. This will 
have a) an interface to request and respond data from 
the personnel GUI and b) an interface for accessing the 
file storage (e.g. reports or notifications).  

• The “legacy tools” module represents APIs for data 
analysis that are offered from the cloud back-end or are 
installed in the hospital private cloud. It describes the 
current software installed in the use case site (e.g. a 
blood glucose special software). This extends the 
interoperability module to allow communication with 
other modules. The core functionality provides an 
interface to convert messages to different formats. 
Another aspect is the meta-data representation of the 
meaning of services (using semantics) to allow 



  

efficient porting of APIs to private clouds. 
To conclude, the high level architecture describes the 

software modules and their interactions. Next we 
demonstrate the mapping of GEs in such scenarios and we 
prototype a system for the FI-STAR use case applications. 

C. Mapping high level architecture modules to GEs 
In this section we correlate the architecture modules and 

their functionalities to the offered GEs available in the FI-
WARE catalogue [3]. Next, we present a brief presentation 
of GEs [2] and associations with diabetes care modules. 
• The “Protocol Adapter GE” serves in between of the 

registered devices (e.g. the patient sensor) and the 
gateway that offers the communication layer to the host 
environment. It supports data collection, sensor 
detection and connectivity. This GE is linked with the 
Gateway Device Management GE or the Data 
Handling GE. 

• The “Gateway Device Management GE” allows 
communication between backend and devices (e.g. the 
protocol adapter). It is linked with the Data Handling 
GE, Security GE, Protocol Adapter GE, Devices with 
machine-to-machine (M2M) protocols, and the 
Backend Device Management GE. 

• The “Data Handling GE” is an attribute based access 
control system for safe data storage. It offers a 
repository and a policy based on Privacy Policy 
Language (PPL). This GE is linked with the Gateway 
Device Management GE. 

• The “Things Management GE” is a backend 
component that acts as the central point of contact to 
receive information about Things and their Properties 
[2]. This GE is linked to gateway GEs (e.g. the Data 
Handling GE). It involves two GEs as follows. 
a. The “Internet of Things Broker GE” based on the 

OSGI framework [6] to provide an interface (Next 
Generation Service Interface (NGSI)-9/10 [2]) to 
communicate with other GEs. This GE 
communicates with the Context Broker GE and the 
Configuration Management GE (using the 
NGSI9/10 protocols). In brief, the interface OMA 
NGSI-10 allows exchanging information about 
entities and their attribute while the interface OMA 
NGSI-9 offers the availability of information about 
entities and their attributes. So, instead of swapping 
attribute values, the exchanged information refers to 
which provider could offer such attribute. It is 
linked with the Configuration Management GE. 

b. The “Configuration Management GE” is 
responsible for context availability registration and 
discovery. It uses IoT agents that make use of 
NSGI-9 interface. It is linked with the 
Publish/Subscribe GE, IoT Broker GE and the 
Gateway Device Management GE. 

• The “Publish/Subscribe Context Broker GE” offers 
publication of context information by entities to the 

context consumers (e.g. NGSI-9 clients). This module 
allows push and pull communication with the 
configuration management GE using the NGSI-9 
interface to exchange context aware information. 

• The “Mediator GE” is a RESTFul API [7] to handle 
mediation services. It is build on a client/server 
architecture where clients make requests and servers 
produce appropriate responses. This GE offers 
interoperability among protocols and data models. 

• The “Identity Management GE” offers authentication 
mechanism as part of the generic security GE. The GE 
could be linked to the Gateway Device Management 
GE to allow an authentication framework. 

• The “Cloud Edge (Proxy) GE” provides agents located 
in the back-end site and ensures the link between cloud 
provider and the end-user. It offers various roles such 
as the management of a catalogue of applications that 
are compatible with a set of Cloud Proxies (named as 
Service Aggregator). This GE accesses it by using a 
Service Platform Management Interface (SPMI) [2] to 
manage cloud platform, instances, images and users. 

• The “Cloud Datacenter Resource Management 
(DCRM) GE” offers cloud hosting capabilities as well 
as management of the infrastructure resources using 
OpenStack cloud software. This GE is linked to the 
Edgelet Management GE that offers a distributed 
environment to run edgelet container software [2]. 

• The “Edgelet Management GE” offers hosting of 
lightweight application components (based on 
JavaScript) for achieving high data rates and low 
latency in distributed settings (e.g. cloud proxy sites). 
This GE is linked to the Cloud Edge (Proxy) GE. 

• The Advanced Communication Middleware GE 
enables flexible and secure communication between 
distributed applications and to/between FI-WARE GEs. 

V. THE GE PROTOTYPE ARCHITECTURE FOR HOSTING  
FI-STAR APPLICATIONS 

The FI-STAR conceptual model consist of the FI-WARE 
provider site (platform) that offers various GEs, the private 
cloud consumer site(s) that is the back-end of the system and 
integrates the use case trial software modules (and their 
associated GEs) and the interoperation setting for 
communication with the front-end that represents the human 
user (GUI and sensors). In general, a cloud provider uses the 
DCRM GE and the Edgelet Management GE to link 
provider and back-end sites. This refers to the initial 
configuration and deployment as next the back-end is 
detached. Fig. 5 demonstrates the design of the proposed 
architecture. 

Particularly, data entered (GUI or from sensor) are 
submitted to the system (through data handling or protocol 
adapter) and are managed by the gateway. Then, 
communication is forwarded to the backend sites (things 
management). The publish/subscribe context broker allows 
push/pull or message subscribing for alerts triggering.  



  

Protocol 
Adapter GE!

Gateway Device 
Management 

GE!

Publish/
Subscribe 

Context Broker 
GE!

Data Handling 
GE!

IoT Broker GE!Configuration 
management GE!

Mediator GE!

Identity 
management GE!

Gateway!

Backend!

Cloud Edge 
(Proxy) GE!

Provider 
DCRM GE!

Service 
Aggregator!

back-end! FI-WARE!
(XI-FI provider)!Sensor!

GUI!

Protocol adapter Interface!

Data handling API!Security API!

M2M (NGSI 9/10)!

API!

Security GE!

NGSI 9!

Request/Response!

Mediation task and 
service catalog!

SPMI!

Consumer 
DCRM GE!

Edgelet 
Management 

GE!

Hosted!
by!

Hosted 
by!

dependency!

front-end!
Advanced 

Communication 
Middleware GE!

user!

 

Fig. 5.  The GEs prototype architecture and communication model among GEs for FI application of the diabetes use care scenario. 

The general hypothesis is that the cloud proxy has been 
configured and compatible services (registered in the service 
aggregator) are available in the back-end site. Hence, we can 
now map software modules of section B to GEs 
specifications of section C as next. Protocol Adapter GE to  
“record data automatically” module, Data Handling GE to 
“GUI for data input” and “personnel GUI” module, 
Publish/Subscribe Context Broker GE to “interoperation and 
notifications” module, the Gateway and Backend GEs to the 
“management and repository” module, Configuration 
Management and IoT Broker (and interfaces) to the “data 
integration” module, Secure GE (Identity Management GE) 
to “secure management”, Mediator GE to “interoperability” 
module, Service Aggregator (Cloud Edge GE) to legacy 
tools module. Next, we extend our and we focus on a generic 
architecture of the FI-STAR applications. The “Advanced 
Communication Middleware GE” is for event management. 

VI. CONCLUSION 
This work presented a prototype architecture for a 

diabetes healthcare application for patient monitoring. 
Through the analysis of initial requirements (in the form of 
text) to the classification of use cases and characterization of 
actors and their operations (in the form of UML) we have 
concluded to prototype architecture for hosting FI 
applications using the FI-STAR reverse cloud approach. We 
suggest that relevant use cases that require a health driven 
cloud reverse approach could utilize this as a basis for 
developing an architecture to host FI applications in the 
premises of a private cloud. However, for specific use cases 
the approach is to follow different software development 
processes, still using UML to characterize their architecture. 

ACKNOWLEDGMENT 
The authors are members of the Future Internet – Social 

Technological Alignment Research (FI-STAR) project, 
which is part of the Future Internet Private Public 

Partnership (FI-PPP) run by the European Commission. FI-
STAR is a FI-PPP phase 2 project which commenced on 1st 
April 2013 and will conduct at least seven early clinical and 
non-clinical digital-health use-case trials in seven or more 
European countries. 

REFERENCES 
[1] L. Schubert, K. Jeffery, B. Neidecker-Lutz (2010) “The Future of 

Cloud Computing –Opportunities for European cloud computing 
beyond 2010”, European Commission [Online]. Available: 
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf, 
Accessed: 8 June 2013 

[2] FI-WARE wiki Available: https://forge.fi-
ware.eu/plugins/mediawiki/wiki/fiware/index.php/Welcome_to_the_F
I-WARE_Wiki, Accessed: 8 June 2013 

[3] FI-WARE catalogue, Available: http://catalogue.fi-ware.eu, Accessed: 
8 June 2013 

[4] C. Thuemmler, J. Mueller, S. Covaci, T. Magedanz, S. D. Panfilis, T. 
Jell and A. Gavras, “Applying the Software-to-Data Paradigm in Next 
Generation E-Health Hybrid Clouds”, In Proc. Proceedings of the 
10th International Conference on Information Technology 
(ITNG2013), IEEE Computer Society, ISBN 978-0-7695-4967-5  

[5] S. Sotiriadis, N. Bessis, F. Xhafa, N. Antonopoulos, "From Meta-
computing to Interoperable Infrastructures: A Review of Meta-
schedulers for HPC, Grid and Cloud," in Proc. Advanced Information 
Networking and Applications (AINA), 2012 IEEE 26th International 
Conference on Advanced Information Networking and Applications 
(AINA-2013), 26-29 March 2012, pp. 874-883 

[6] OSGI framework, Available: http://www.osgi.org/Main/HomePage, 
Accessed: 8 June 2013 

[7] B. Mulloy  "Web API design",  
Available: http://info.apigee.com/Portals/62317/docs/web%20api.pdf 
Accessed: 8 June 2013 

[8] FI-WARE, Available: http://www.fi-ware.eu/, Accessed: 8 June 2013 
[9] ISO-25010, Available: http://sa.inceptum.eu/sites/sa.inceptum.eu 

/files/Content/ISO_25010.pdf, Accessed: 29 July 2013 
[10] Google Health, Available: http://www.google.com/intl/en_us 

/health/about/, Accessed: 29 July 2013 
[11] Open Network Foundation (2012), "OpenFlow-Enabled Hybrid Cloud 

Services Connect Enterprise and Service Provider Data Centers", ONF 
Solution Brief 2012, Available: https://www.opennetworking.org/ 
solution-brief-openflow-enabled-hybrid-cloud-services-connect-
enterprise-and-service-provider-data-centers, Accessed: 29 July 2013 


