
Towards inter-cloud simulation performance analysis:
Exploring service-oriented benchmarks of clouds in SimIC

Stelios Sotiriadis, Nik Bessis, Nick Antonopoulos

School of Computing & Maths, University of Derby, Derby, United Kingdom
(s.sotiriadis, n.bessis, n.antonopoulos)@derby.ac.uk

Abstract — On recent years, much effort has been put in
analyzing the performance of large-scale distributed systems
like grids, clouds and inter-clouds with respect to a diversity
of resources and user requirements. A common way to
achieve this is by using simulation frameworks for evaluating
novel models prior to the development of solutions in highly
cost settings. In this work we focus on the SimIC simulation
toolkit as an innovative discrete event driven solution to
mimic the inter-cloud service formation, dissemination, and
execution phases; processes that are bundled in the inter-
cloud meta-scheduling (ICMS) framework. Our work has
meta-inspired characteristics as we determine the inter-cloud
as a decentralized and dynamic computing environment
where meta-brokers actas distributed management nodes for
dynamic and real-time decision making in an identical
manner. To this extend, we study the performance of service
distributions among clouds based on a variety of metrics (e.g.
execution time and turnaround) when different heterogeneous
inter-cloud topologies are taking place. We also explore the
behavior of the ICMS for different user submissions in terms
of their computational requirements. The aim is to produce
the results for a benchmark analysis of clouds in order to
serve future research efforts on cloud and inter-cloud
performance evaluation as benchmarks. The results are
diverse in terms of different performance metrics. Especially
for the ICMS, an increased performance tendency is observed
when the system scales to massive user requests. This implies
the improvement on scalability and service elasticity figures.

Keywords: Inter-Cloud; SimIC; CloudSim; ICMS; Meta-broker
resource management; cloud benchmarks.

INTRODUCTION
Recently, inter-cloud has been promoted as the next step

of the Internet evolution with regards of realizing a wider
service capability among collaborated computing clouds.
This is based on the cloud attitude that implies an elastic
service execution setting by giving the infinite resource
impression to users. However, as the setting grows, the
capacity of flexible cloud datacenters decreases due to their
static-ness, thus making vital to evolve to an inter-
connecting setting that continues to offer this endless
service elasticity. This is the inter-cloud as proposed by [2]
wherein, users utilize remote resources in a bespoke based
model by submitting services that are executed within
Virtual Machines (VMs); a process that is called
sandboxing. Based on that, the inter-cloud meta-scheduling
(ICMS) has been proposed in [8] as a novel framework that
offers the fundamental capabilities for service distribution

among inter-clouds on an analogous tactic to grid
computing distributed management systems.

We utilize the meta-brokering model for achieving such
functionality. This indicates that meta-components are
placed on the top of cloud decision-making entities named
as local-brokers. The novelty of our approach stands on the
consideration of dynamic and real-time decision-making
processes for allowing service and VM exchanging in order
to achieve various performance criteria. Real-time decision
making is considered as an important criterion for achieving
realistic resource management [10]. Our implementation
allows heterogeneous service distribution on spontaneous
choices on scheduling and resource management policies.
The ICMS is composed from a set of sub-scheduling
heuristics that aim to request and accept connection with
remote sites, distribute requests within that system, search
for available resources, allocate the resource based on
criteria, execute VMs within resources, and monitor the
whole procedure for keeping performance measures. The
entire functionality is based upon the meta-computing
paradigm that suggests decentralized resource managers are
interconnected to co-sites that have a corresponding
architecture.

Therefore, this work presents a performance analysis
study of the cloud service submission implemented in
CloudSim and SimIC. The ‘Simulating the Inter-Cloud’
(SimIC) toolkit is a discrete event simulation framework
that mimics an inter-cloud service dissemination setting.
Specifically, the toolkit is developed using the SimJava
package that allows event exchanging among components
in terms of messages that are sending among the system
entities at different time intervals as indicated by the users.
This allows us to model inter-clouds wherein various users
submit various requests on different phases. Fundamentally
we implement a diversity of performance metrics including
service makespan, VM execution times, request turnaround
times, throughput of entities, resource utilization, response
ratio, energy consumption of datacenters, VMs utilization
cost, and service latency figures.

For demonstrating our performance benchmarks we
compare identical cloud configurations that are
implemented in the CloudSim [3] and SimIC [8]
respectively. It should be mentioned that the original design
decision of SimIC is based on CloudSim core classes.
However, for achieving experimentation on dynamic and
real-time multi-user submissions (e.g. in latency of setting)
that includes meta-computing functionality (operations that
are not supported by the available CloudSim version

2013 27th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4952-1/13 $26.00 © 2013 IEEE

DOI 10.1109/WAINA.2013.196

765

presented in [3] the whole toolkit has been re-developed.
This includes the development of the core cloud entities
(e.g. clouds datacenter, hosts, VMs, as well as resource
management policies) as well as meta-brokers and
hypervisors of the system using SimJava enabled concepts.
Based on that, the experimental analysis of the two settings
shows that SimIC compliments CloudSim features by
presenting comparable performance analysis on service
execution times (e.g. VMs execution times). In addition, the
consideration of meta-schedulers (meta-brokers) that
dynamically control computational capacity of datacenters
in an inter-cloud setting along with real-time scheduling and
policy management of jobs and entities empowers the
potentials of SimIC. Finally, the results produced from the
SimIC will serve future research studies as benchmarks for
clouds and inter-clouds performance analyses.

The next section II presents a discussion of the related
works and the motivation of our study. The rest of the paper
is organized as follows, section III demonstrates the
algorithmic design of ICMS and the architectural strategy of
SimIC in terms of inter-cloud connectivity, and section IV
presents the experimental analysis by the inductive
evaluation of functional scenarios of clouds and inter-
clouds. Finally, section V illustrates a discussion on the
contribution of our benchmarks for adding future directions
as well as the conclusions of our study.

 MOTIVATION AND RESEARCH BACKGROUND
The huge grow of distributed infrastructures (e.g.

clouds) in terms of resources that are utilized remotely has
created new demands of how to understand and evaluate the
results produced from such high-performance settings.
However, the performance as a meaning could include
different perspectives of time and resource usage related
with the origin of the system. This study aims of identifying
experimental results produced from different simulation
cases of clouds and inter-clouds in order to become the
benchmarks for future evaluations by giving specific
performance metrics analysis. A solution to achieve this, is
through simulation of identical user submissions in different
simulation settings for exploring the experimental features
and analyzing results.

However, a general appreciation of all simulations is
unrealistic due to the different requirements that the system
is developed upon. This is realted with the requirements of
the simulated systems [9]. Specifically, grid simulators like
GridSim etc. as discussed in [8]have been determined as
inappropriate to be used in cloud settings mainly because of
the multi-layer structure of the cloud service abstraction [3].
In addition, virtualization is considered as one of the key
cloud elements that it is not also included in grid simulation
toolkits. This includes the elastic factor that facilitates a
cloud system. Thus, the motivation of our study is focused
on the cloud computing simulators and their performance
results in order to meet the diverse requirements of user
submissions in terms of time and resource usage.

So, for the case of clouds and inter-cloud none of the
cluster or grid solutions can address the arising application
level requirements. This is because of the application-

oriented cloud emphasis and of the elasticity of services in
the pay-on-demand model [5]. For that reason authors in [3]
presented the CloudSim simulation framework that aims to
simulate subscribed services that are delivered to the users
in an elastic cloud setting. A different simulation case for
clouds is the iCanCloud simulator [4] that is a solution for
optimizing related performance criteria (e.g. VM
performance).

Both toolkits offer capabilities in developing cloud
service submissions in cloud datacenters. However, the
design of our simulator was originally based on the
CloudSim toolkit (architecture and multi-layered structure)
thus in this work we explore performance analysis of SimIC
over the CloudSim in order to capture results, support our
design modeling decisions, and evaluate identical cloud
settings when various users request for identical resources
in both toolkits. It should be mentioned that the SimIC
compliments SimCloud setting in terms of extending certain
interoperable and dynamic functionalities. To this extend,
we execute the same experimentation in the toolkits,
including entities such as hosts and virtual machine (VM) as
well as their configurations.

In advance, the study goes one step further by
presenting simulation results of the inter-cloud service
submission of the ICMS framework [8]. The last one offers
the inter-cloud functionality by considering a large-scale
resource management setting wherein real-time and
dynamic scheduling is taking place. Both experimental
cases aim on a) presenting the cloud benchmark analysis
and b) the inter-cloud benchmark presentation to be
valuable for future evaluations. Through this analysis,
prospect experimental results are presented for the meta-
brokering model. The ICMS vision is to design a total
decentralized meta-broker based on our previous inter-cloud
model presented in [7]. This will offer significant
advantages, as it will support highly interoperability,
flexibility and service heterogeneity (thus resource as well)
while at the same time a job execution manner in a
decentralized fashion. The next section illustrates the
architectural analysis of the SimIC as well as the inter-cloud
capability of the ICMS framework.

ARCHITECTURAL REQUIREMENTS OF CLOUDSIM AND ICMS
OVER THE SIMIC

The ICMS is a set of algorithms for achieving service
distribution in large-scale inter-clouds that aim to
accomplish the following.
a) Request and accept connection with remote sites

through meta-brokers.
b) Distribute service submission requests within an inter-

cloud system and their entities.
c) Search for available resources on a real-time

submission using dynamic workload management.
d) Allocate the resource based on performance criteria

related with the required computational capacity.
e) Execute a VM within a selected resource by

sandboxing the user requirements.

766

f) Monitor the whole procedure for keeping a diversity of
performance measurements.
The processes discussed above have been implemented

within the SimIC simulation toolkit in order to achieve the
meta-brokering and dynamic service dissemination among
interoperable clouds. In general the SimIC offers a flexible
and elastic service submission environment with the
following characteristics.
a) It achieves large-scale distribution of job requests

among meta-brokers that are inter-connected in random
topologies.

b) It offers decentralized topologies of meta-brokers for
realistic large-scale scheduling.

c) It includes static and dynamic management policies of
dynamic workload management.

d) It includes static and dynamic service level agreement
(SLA) matchmaking policies among meta-brokers.

e) It offers static and dynamic instantiation of VMs with
regards to history records.

f) It achieves real-time job scheduling in VMs according
to a variety of heuristic scheduling criteria (e.g.
preemptive and non-preemptive cases).

g) It includes dynamic queuing of VMs according to
selected schedulers (e.g. shortest job first etc.).

h) It addresses VM migration according to cloud provider
requirements.

i) It offers re-active management of heterogeneous
services submission in the form of VMs.
The CloudSim [3] involves a set of cloud entities in

order to simulate the VM allocation according to specific
requirements. Particularly, during the simulation
construction the modeler determines the VM parameters
e.g. cpu size, ram etc., the job parameters, named as
cloudlet, that includes the length of the job, the number of
cores etc., the datacenter configuration that includes the
number of datacenters, hosts and computational power. In
addition, datacenter characteristics involve system
architecture and costs. Finally, the setting contains various
policies for sharing host capacity among VMs (e.g. the
cloudlet space sharing policy). The simulation starts when a
modeler specifies the required parameters and decides the
number of users (determined by cloudlets) that are about to
enter the simulation setting and to be submitted to a broker
that forwards the request fro resource allocation.

The SimIC [8] involves a similar preliminary
configuration pattern however; this involves additional
requirements such as the number of users, the latency of
user submissions and the number of jobs that a user
submits. In addition, the host and datacenter parameters
(along with user requirements) are defined in text files that
can be easily adapted and loaded into the simulator. The
user is also represented by an SLA matchmaking policy that
includes dynamic workload management based on current
workloads of clouds. SimIC involves the reflection of the
local policies in a hypervisor component that collectively
manages the whole service submission of the cloud, e.g.
VM scheduling and deferred queues formations. Finally, in
the simulation configuration file the user could design the

number of users and jobs, the delay on submissions, the
number of clouds their inter-relationships, the latency of
each entity to respond to requests and the loading of user
and host requirements into the toolkit.

The great advantage of SimIC includes the profiling of
user requirements that is shared among entities without
exposing all user information but only the parameters that
are required from each entity. In addition, policies on VM
instantiation, message exchanging information, local
resource management policies and energy-aware-ness
experimentation are also included. The next section presents
the experimental analysis of a hybrid dataset that is
submitted to both simulation settings in order to measure
the performance of cloud service execution in CloudSim
and SimIC that will serve as benchmarks.

EXPERIMENTAL ANALYSIS AND BENCHMARK RESULTS OF
CLOUDSIM AND SIMIC

This section presents the experimental analysis of
CloudSim and SimIC when identical user submissions are
taking place. We execute a basic experiment initially in
CloudSim and we present the results produced when the
system encompasses the configuration of tables I and II.In
particular, table I demonstrates the cloud host and
datacenter configuration while table II shows the number of
users and the requested computational performance
measurements.

TABLE I: CLOUD CONFIGURATION PARAMETERS
FOR INPUT IN CLOUDSIM AND SIMIC

Host Requirements Experiment
parameters

Mips:
RAM:
Storage:
Bandwidth:
Host number:
Host 1:
Host 2:
Datacenters:

1000
2048

1000000
10000

2
4
2
2

TABLE 2: USER CONFIGURATION PARAMETERS
FOR INPUT IN CLOUDSIM AND SIMIC

VM Requirements Experiment
parameters

CPU size:
RAM:
Mips:
Bandwidth:
Cores:

1000
512

1000
1000

1
Further to this, we present the results as produced by the

SimIC and we compare both cases for the average execution
time of the service submission (presented as VMs). The
performance measures are given by formula (1) that
calculates the millions of instructions per second (mips) as a
rate for operations per unit used by the CloudSim and
SimIC.

����� � �
����������

���
� ����������

767

Similarly, (2) calculates the execution time of job in VM
in terms of instructions count submitted and cycles per
instruction as used by SimIC. The h parameter demonstrates
the time duration of the VM leasing by the cloud user.

���������� �
���	�
�	���

�������
����

���������� �
�

�����
��

�

����������
����� � ���� �

The execution time of the service is given by formula
(3) that contains the total latency of the system for the
service to reach the destination VM as follows.

��������������� � �������������� � �����������	
���� ���� �

For identifying the performance benchmark of cloud
submission we execute a number of user submissions for
VMs in CloudSim. This includes 1 user to 1 VM request
towards 100 users with 100 VM requests. It should be
mentioned that CloudSim shares the computational power
of cpu cores in space sharing policy, thus the VM execution
time is increased for high workloads. In parallel, SimIC
utilizes an identical feature that dynamically allocates more
resources in order to fulfill the requests. Figure 1
demonstrates the experimental analysis of CloudSim and
SimIC in which the same input configuration of users and
requests has been submitted.

It is apparent that both systems execute jobs in a parallel
execution trend, however by operating in different For
example, CloudSim shares computational power of hosts
within a datacenter in order to fulfill all the requests, while
SimIC considers a policy for dynamic CPU sharing by
considering a latency that increases the VM execution time
as presented in [8]. In any case, the fundamental benchmark
analysis shows that for high workloads (greater than 50
users) both simulators offer corresponding parallel
increased trend line of the VM execution times.
Accordingly, based on figure 1 we propose that SimIC
operates in corresponding with CloudSim, wherein a
slightly optimization of execution time could be observed
(mainly due to the low latency of dynamic allocations).
Nevertheless, the experiment illustrates that benchmark
analysis in both toolkits offer identical result output.

Figure 1: The comparison of CloudSim and SimIC for one cloud

specification of 1-100 user submissions for 1-100 VMs.

In order to present the novelty of the SimIC we address
a more complex objective that allows job distribution

among different clouds that accept the SLAs posed by
users. In that way we implement various realistic scenarios
wherein collaborated clouds exchange information on
behalf of the user request on run-time by always checking
the SLA specification with regards to current execution
workload and capacity of sub-clouds to execute certain
requests. We implemented an inter-cloud of 8 clouds
wherein various set of users (16 and 32) submit jobs (10
per user). The distribution algorithm aims of allocating jobs
to clouds that fulfill specific requirements that are
sandboxed in VMs. For our use case we implement a
scenario with regards to a) run-time decision-making and b)
dynamic workload management. The next sections present
four experimental cases that are executed in SimIC within
an inter-cloud setting. It should be mentioned that the inter-
cloud meta-brokering topology implies that each meta-
broker is interconnected with the next one (e.g. meta-broker
1 to meta-broker 2, meta-broker 2 to meta-broker 3 etc.).

Case 1: 160 jobs submitted by 16 users(partial SLAs)
In first case each user submits an identical job

specification that can be served only from the clouds 1, 4, 5
and 8. This is because of the heterogeneity factor of the
service submissions that require matching with the
competency of the system to execute the requests (SLA
matchmaking). In addition, the dynamic workload
management allows services that cannot be executed locally
to be forwarded to capable resources that can offer the
computational capacity. In this setting we implement the
execution time of the VM that reflects the current system
delay (measured as turnaround time) given by formula (4).
It should be mentioned that the time interval of VM usage is
not determined to affect performance (h is set to 1).

������������� � �
�����	��������������

�������������������
�
�����

� �
����		�������� � �

The second metric is the makespan that demonstrates
the sum-up of the VM execution time plus the total delay
due to service dissemination given by formula (5).

����������� � ����
�����	
���� � 	
	����������������

Figure 2: The turnaround and the polynomial trend line of turnaround

timesof SimIC for 160 identical jobs submitted by 16 users (10 jobs per
user) -Jobs can be executed from clouds 1, 4, 5 and 8 (SLA

matchmaking).

By executing this scenario case, we extract results that
are presented in figures 2, 3 and 4. Specifically, figure 2
demonstrates the turnaround time and the polynomial trend

��

��

��

��

��

��

	�

�� ��
� ��
�

��
�

��
�

��
�

�

�

��
�

��
�

��
�

��
�

�

�

��
�

��
�

	�
�

	�
�

	

�

��
�

��
�

��
�

��
�

�

�

�
�

�
�

��
��
��

�	

�
�
�

��

�
��

������
��
���

����

��	

��������������������������������������� ��!"���

��������������������������������������"��#��

768

line of this value of the SimIC for 160 identical jobs
submitted by 16 users (10 jobs per user). As initially
discussed jobs can be executed from clouds 1, 4, 5 and 8
(SLA matchmaking). The trendline denotes that as the
number of user submissions increase the system tends to
offer improved turnaround times by achieving job
executions for all the set of jobs.

Figure 3 shows the makespan values of SimIC when
160 identical jobs submitted by 16 users (10 jobs per user)
enter the simulators. Again the same constraint includes that
jobs can be executed from clouds 1, 4, 5 and 8. In
particular, the turnaround times are tend to increase due to
the distribution of jobs among meta-brokers in order to
achieve job execution of the whole input set. In general, the
makespan times of the last jobs have been showing an
increased tendency to a factor of 0.658 (this is calculated as
the division of the average value of result set by 1000) that
we consider as an acceptable rate mainly because of the
large submission number. Specifically, this will serve as a
metric for comparison with next scenario cases.

Figure 3: The makespan values of SimIC when 160 identical jobs
submitted by 16 users (10 jobs per user) -Jobs can be executed from

clouds 1, 4, 5 and 8 (SLA matchmaking).

Figure 4 shows the cloud allocation numbers of SimIC
when 160 identical jobs submitted by 16 users (10 jobs per
user) that can be executed from clouds 1, 4, 5 and 8 (SLA
matchmaking). It is apparent that clouds 4 and 8 served the
most of the service submissions mainly because of the
meta-brokering topology.

Figure 4: The cloud allocation numbers of SimIC when 160 identical jobs

submitted by 16 users (10 jobs per user) – Jobs can be executed from
clouds 1, 4, 5 and 8 (SLA matchmaking).

Case 2: 160 jobs submitted by 16 users(full SLAs)
This case scenario involves the experimental input of

160 identical jobs submitted by 16 users (10 jobs per user)
wherein all clouds can offer job execution. However, in this
case the dynamic workload management defines the
dissemination functionality. This involves that if a cloud
cannot execute the job due to limited resources then it sends
the job back to the meta-broker for further dissemination.
Figure 5 shows the turnaround and the polynomial trend
line of the turnaround times of SimIC for 160 identical jobs
submitted by 16 users (10 jobs per user) where all clouds
can offer job execution. It is apparent that the turnaround
polynomial trend line shows an increasing trend for 50 to
100 job submissions; however for 100 to 160 the line shows
a decreasing rate. That is considered as an improvement
because the system tends to offer better performance
(decrease turnaround time trends) for peak workloads.

Figure 5: The turnaround and the polynomial trend line of the turnaround
of SimIC for 160 identical jobs submitted by 16 users (10 jobs per user) -

all clouds can offer job execution (SLA matchmaking).

Figure 6 presents the makespan values of SimIC when
160 identical jobs submitted by 16 users in an identical case
as previously. The chart shows an increasing trend of the
makespan with ratio factor of 0.59 that it is marginally
lowest compared with case 1.

Figure 6: The makespan values of SimIC when 160 identical jobs

submitted by 16 users (10 jobs per user) - all clouds offer job execution.

Figure 7 presents the job allocation among clouds and
their hypervisor that are responsible for creating and
allocating VMs. It is apparent that clouds 2 and 6 served
most of the services. This is again mainly because of the
inter-cloud meta-brokering topology.

769

Figure 7: The cloud allocation numbers of SimIC when 160 identical jobs
submitted by 16 users (10 jobs per user) –Jobs can be executed from the

whole collection of clouds.

Case 3: 320 jobs submitted by 32 users (full SLAs)
This case scenario involves the experimental input of

320 identical jobs submitted by 32 users (10 jobs per user)
wherein 8 clouds can offer job execution (SLA
matchmaking) for all of the services.

Figure 8: The turnaround and the polynomial trend line of turnaround of
SimIC for 320 identical jobs submitted by 32 users (10 jobs per user) –

Jobs can be executed from the whole collection of clouds.

This is considered a massive submission wherein the
delay among each user 10 set submission is determined to
10 ms.

Figure 9: The makespan values of SimIC when 320 identical jobs

submitted by 32 users (10 jobs per user) – all clouds offer job execution.

Figure 8 shows the turnaround times and the polynomial
trend line of turnaround of SimIC for the aforementioned
specification. It is apparent that for high workloads the

polynomial trend line of turnaround shows a decrease
tendency that is considered a significant improvement of
our setting. On the other hand, the turnaround time is
increased due to the highly number of users that utilize
resources. The ratio factor in this case is the 0.63 that again
it is decided as an acceptable rate if we consider that for
case 2 (with half number of users) the rate was 0.59.
Finally, figure 9 shows the cloud allocation map, wherein
clouds 2 and 6 receive the most number of job requests.
This is similar to case 2 due to the meta-brokering topology.

Figure 10: The cloud allocation values of SimIC when 320 identical jobs
submitted by 32 users (10 jobs per user) – all clouds offer job execution.

Case 4: 320 jobs submitted by 32 (pattern submission)
This experimental case includes the turnaround,

makespan and the polynomial trend line of turnaround times
of jobs executed in SimIC. This time the specification is
altered wherein 8 clouds can execute certain requests. This
involves a more complex setting where SLAs and user
submission follows a submission pattern as follows: user 1-
8 to cloud 1-8, user 9-16 to cloud 1-8, user 17-24 to cloud
1-8 and user 25-32 to cloud 1-8. To this extend, the system
considers a highly number of failures mainly because of the
mismatching of SLAs that denotes the non-competency of
the cloud to execute certain requests. Figure 11 shows the
turnaround, makespan and the polynomial trend line of
turnaround of jobs executed in SimIC for the
aforementioned specification. The rate factor in this case,
(for the number of successful jobs), is determined in 0.56 a
values similar to the previous cases.

Figure 11: The turnaround, makespan and the polynomial trend line of

turnaround of jobs executed in SimIC (16 clouds where 1-8 can execute
SLAs, and user submission pattern as follows user 1-8 to cloud 1-8, user
9-16 to cloud 1-8, user 17-24 to cloud 1-8 and user 25-32 to cloud 1-8).

770

Finally figure 12 shows the job allocation and failures
for demonstrating the positioning of jobs within the bucket
class. This class keeps a log of non-executed jobs and
contains a trigger to release the jobs in the inter-cloud in
regular intervals. However, in our experimental case we
have considered impractical to release the queue as the
system status on SLA matchmaking remains static. This
means that jobs will not be executed till the setting extends
to include capable for SLA matchmaking clouds.

Figure 12: The job allocation numbers and job failures (bucket) of SimIC
for 16 clouds where 1-8 can execute SLAs, and user submission pattern.

CONCLUSIONS AND FUTURE RESEARCH STEPS
In this work we compare identical cloud configurations

that are implemented in the CloudSim [3] and SimIC [8]
respectively in order to show the parallel performance
tendency of both toolkits. For achieving experimentation on
dynamic and real-time multi-user submissions within an
inter-cloud we present an extended experimental analysis of
four cases that offers prosperous results. In particular, for
high workload submissions with a partial capability of
service execution of clouds the system shows decrease
values of selected benchmarks. Similarly, for the case of a
complete distribution of service submissions the system
shows again improvement on turnaround times. In
particular for the third case (320 job submissions) the
turnaround times are decreased during the simulation time
elapses. At last, the makespan values for the first three cases
increased due to the latency value that it is added between
the service submissions. But then again the ratio that
represents the increasing rate remains in similar levels for
all the cases.

Lastly, case 4 demonstrates the failures of a system due
to the incompetence of the local clouds to execute the
requested jobs. It should be mentioned that this is non-
related with the dynamic workload management but with an
opportunistic SLA requirement regarding specific resources
(e.g. specific software). In general this study presents that
by using the SimIC [8] a modeler could configure a
diversity of inter-clouds in terms of datacenter hosts and
software policies wherein desired number of users could
send single or multiple requests for computational power
(cores, CPU, memory, storage, bandwidth), software
resources (measured empirically in clocks per instruction
and millions of instructions per second) and duration of VM
utilization. The toolkit contains a selection of meta-

scheduling inspired characteristics for achieving job
dissemination, resource discovery services, dynamic
workload management, real time scheduling of jobs in
VMs, static and dynamic VM deployment policies and VMs
migration cases. In the future we aim of improving the
quality of the SimIC and extend the experimental analysis
to contain various numbers of cloud and user submissions
as well as different meta-brokering . In addition, It should
be mentioned that former works for optimizing the message
exchanging as presented in [1] among SimIC entities as
well as the resource discovery scheme of [6], will add to the
overall optimization of the selected metrics.

REFERENCES

[1] Bessis, N., Sotiriadis, S., Pop, F. And Cristea, V. (2012). Optimizing
the Energy Efficiency of Message Exchanging for Job Distribution
in Interoperable Infrastructures, 4th IEEE International Conference
on Intelligent Networking and Collaborative Systems (INCoS-
2012), September 19-21, Bucharest, pp. 105-112

[2] Bessis, N., Sotiriadis, S., Xhafa, F., Pop, F. and Cristea, V. (2012).
Meta-scheduling Issues in Interoperable HPCs, Grids and Clouds,
International Journal of Web and Grid Services, Volume 8, Issue 2,
Inderscience, pp. 153-172.

[3] Calheiros, R., N., Ranjan, R., Beloglazov, A., De Rose, C., A., F.,
and Buyya, R. (2011). CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Softw. Pract. Exper. 41, 1
(January 2011), p.p.: 23-50.

[4] Núñez, A., Vázquez-Poletti, L., J., Caminero, A. C., Castañé G. G.,
Carretero, J., and Llorente, M. I., (2012) storage
networks. iCanCloud: A Flexible and Scalable Cloud Infrastructure
Simulator. Journal of Grid Computing, Volume 10, Number 1. p.p.:
185-209. Springer.

[5] Sotiriadis, S., Bessis, N., Xhafa, F., and Antonopoulos, N. (2012).
From Meta-computing to Interoperable Infrastructures: A Review of
Meta-schedulers for HPC, Grid and Cloud. In Proceedings of the
2012 IEEE 26th International Conference on Advanced Information
Networking and Applications (AINA '12). IEEE Computer Society,
Washington, DC, USA, pp. 874-883.

[6] Sotiriadis, S., Bessis, N. And Kuonen, P. (2012). Advancing Inter-
cloud Resource Discovery based on Past Service Experiences of
Transient Resource Clustering, 3rd International Conference on
Emerging Intelligent Data and Web Technologies (EIDWT-2012),
September 19-21, Bucharest pp. 38-45

[7] Sotiriadis, S., Bessis, N. and Antonopoulos, N. (2012).
Decentralized Meta-brokers for Inter-Cloud: Modeling Brokering
Coordinators for Interoperable Resource Management, 9th
International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD'12), May 29-31, Chongqing, May 29 – 31 2012,
pp. 2475-2481.

[8] Sotiriadis, S., Bessis, N., Antonopoulos, N. (2012), SimIC: An Inter-
Cloud Simulator for large scale resource management, The 27th
IEEE International Conference on Advanced Information
Networking and Applications (AINA-2013), Barcelona, Spain,
March 25-28, 2013

[9] Sotiriadis, S., Bessis, N., Huang, Y., Sant, P. And Maple, C. (2010).
Defining Minimum Requirements of Inter-collaborated Nodes by
Measuring the Weight of Node Interactions, 4th International
Conference on Complex, Intelligent and Software Intensive Systems
(CISIS-2010), 15th-18th February, Krakow, pp: 291-298.

[10] Stavrinides, G., L., and Karatza, D., H., (2010). Scheduling multiple
task graphs with end-to-end deadlines in distributed real-time
systems utilizing imprecise computations. J. Syst. Softw. 83, 6 (June
2010), pp. 1004-1014.

771

